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Abstract 1

We propose a relational framework in which spacetime emerges from informational co- 2

herence rather than presupposed geometry. The central mechanism, Variety–Coherence 3

Optimization, maximizes diversity of relational states while preserving local compatibility. 4

This yields a suppression kernel from which coherent patches form and stabilize once a 5

phase-dispersion threshold is reached. Saturated patches act as irreducible units whose 6

propagation defines a directed acyclic hypergraph, providing causal order without back- 7

ground structure. A Fourier-series duality then maps internal phase structure into discrete 8

spatial geometry, offering a spectral notion of locality. The framework reproduces fea- 9

tures associated with holography and causal sets while remaining model-independent, 10

highlighting coherence saturation as a unifying principle for emergent spacetime. 11

Keywords: coherence; emergent geometry; Fourier spectrum; information theory 12

1. Background 13

A central question in contemporary theoretical physics is whether the geometry 14

of spacetime is a fundamental construct or an emergent phenomenon arising from a 15

deeper pre-geometric substrate. This question lies at the heart of quantum gravity research 16

and has motivated a wide range of approaches that seek to reconstruct spacetime from 17

more primitive, often relational, degrees of freedom. Despite their formal and conceptual 18

differences, these frameworks converge on the idea that spacetime may not be an input to 19

the theory but a derived structure. 20

One prominent approach is holographic duality, most notably realized in the AdS/CFT 21

correspondence [1], wherein a theory of quantum gravity in a bulk anti-de Sitter spacetime 22

is dual to a lower-dimensional conformal field theory defined on its boundary. Within this 23

framework, geometric notions such as distance and connectivity are believed to emerge 24

from quantum entanglement patterns in the boundary theory [26,27]. More specifically, the 25

Ryu–Takayanagi formula makes this connection precise by relating entanglement entropy 26

to the area of minimal surfaces in the bulk [2]. Subsequent developments have provided 27

further evidence that bulk spacetime is encoded in entanglement structure, rather than 28

prescribed independently [3–5]. 29

Parallel insights have arisen from the study of scattering amplitudes in quantum field 30

theory. It has been shown that certain classes of amplitudes admit simple representations 31

in terms of combinatorial and geometric objects such as the amplituhedron, associahedron, 32
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and cosmological polytopes [6–9]. What is remarkable is that these geometric construc- 33

tions generate amplitudes without relying on the usual formulation involving particles 34

moving through space and time. Instead, key physical principles such as locality and 35

unitarity emerge from the internal structure of the geometry itself. This suggests that the 36

underlying rules governing interactions may be more fundamentally tied to geometric and 37

combinatorial principles than to traditional spacetime-based dynamics. 38

A contrasting line of research is causal set theory (CST), which proposes that spacetime 39

is not continuous but fundamentally discrete, consisting of elementary events organized 40

into a partially ordered set where the order encodes causal relations [10]. In this framework, 41

the familiar continuum of spacetime geometry is not fundamental but emerges in an 42

appropriate coarse-grained limit of the discrete structure. The causal order captures the 43

light-cone structure of spacetime, while volume is encoded by counting elements—that is, 44

the number of events corresponds to the spacetime volume in Planck units [11,20]. This 45

approach is motivated by the insight that causality and discreteness together might form 46

a minimal substrate from which geometry can emerge, without invoking background 47

manifolds or coordinate systems. CST has developed tools to reconstruct manifold-like 48

behavior from the order-theoretic data alone, including approximate dimension estimators 49

[22], methods to recover curvature [23], and phenomenological models of cosmic expansion 50

and entropy bounds [13,24]. Overall, CST exemplifies a fundamentally discrete approach 51

in which spacetime is built from the bottom up—from individual events and their causal 52

links—offering a radical departure from continuum-based field theories and aligning with 53

the broader emergentist paradigm. 54

A related paradigm, motivated by the computational universe hypothesis, considers 55

that physical law might arise from the evolution of symbolic systems governed by local 56

rewriting rules. In this view, space, time, and causality are emergent constructs resulting 57

from the iterative application of minimal substitution operations on discrete combinato- 58

rial structures. Recent work in hypergraph models and computational frameworks has 59

proposed that such processes may underlie both quantum mechanics and gravity [18,21]. 60

This is just a sampling of the approaches that exemplify a shift away from treating 61

spacetime as a fundamental arena and toward viewing it as a manifestation of deeper, 62

often discrete and relational, organizational principles (e.g., [31,34–38]). The convergence 63

of insights from holography, positive geometry, causal order, and symbolic computation 64

suggests that it may be possible to formulate a unified framework in which spacetime and 65

its attendant structures arise from compatibility conditions among more basic informational 66

elements. 67

2. Introduction 68

In this work, we propose a new framework within the paradigm of non-spatiotemporal 69

foundations, grounded in the idea that physical structure originates from relational com- 70

patibility among primitive informational elements. We stress that the program presented 71

herein does not seek to supplant existing paradigms. Our goal is to identify a unifying 72

principle that may underlie their apparent successes. 73

Our central hypothesis is that space, time, and topology are not fundamental con- 74

structs, but rather stabilized expressions of a dynamic balance between the promotion of 75

local informational diversity and the preservation of global coherence. We argue that this 76

principle—formulated as a competition between relational variety and order—can give 77

rise to rich structural and dynamical behavior without the assumption of a background 78

spacetime. 79

At a foundational level, we propose that geometric and temporal structure emerge 80

as the result of deeper patterns of intrinsic relations between discrete, label-bearing infor- 81
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mational elements. As such, physical order—such as the appearance of spatial locality 82

or causal flow—emerges from an interplay between diversity and coherence within a 83

relational substrate. Under certain conditions, local regions of high compatibility organize 84

into stable structures, which then act as seeds for further structural development. This 85

process gives rise to an evolving network of relational configurations that encodes both 86

the architecture and temporal unfolding of emergent space. Therefore, geometry and time 87

are not imposed externally, but emerge through internal transitions within the relational 88

system. As coherent structures accumulate, a directional pattern of ancestry develops, 89

yielding a natural notion of temporal order. Spatial organization, meanwhile, appears 90

through a reinterpretation of internal relational degrees of freedom, effectively projecting a 91

geometric scaffold from patterns of informational agreement. 92

This framework can be seen as a synthesis of core insights from the approaches to 93

quantum gravity described is Sec.1. More specifically, like holographic duality, it suggests 94

that geometry is deeply connected to entanglement. It also incorporates the causal primacy 95

emphasized in CST, yet derives causal order dynamically from relational ancestry rather 96

than postulating it axiomatically. The emphasis on emergent locality and combinatorial 97

structure was motivated by the developments in positive geometry, such as associahedra 98

and cosmohedra. Finally, the use of discrete, rule-governed informational updates resonates 99

with symbolic and computational models, while grounding the emergence of structure 100

in optimization principles rather than rewriting rules. In this sense, our proposal aims to 101

offer a unifying perspective that retains the strengths of each approach while advancing 102

a new organizing principle: the emergence of space and time from the interplay between 103

informational diversity and relational coherence. 104

With respect to Fig. 1, we compare three of the major paradigms within the contempo- 105

rary landscape of quantum gravity: the AdS/CFT correspondence, CST, and loop quantum 106

gravity (LQG). Each of these frameworks offers a distinct approach to the emergence of 107

spacetime. Despite their differences, these approaches exhibit key areas of conceptual 108

overlap. Both AdS/CFT and LQG treat spacetime as an emergent phenomenon rather 109

than a primitive manifold. Causal set theory and LQG both rest on discrete structures 110

and reject the continuum as fundamental. AdS/CFT and causal sets, though coming from 111

different angles, each deny the primacy of a smooth manifold—either replacing it with a 112

lower-dimensional quantum theory or with a discrete causal order. 113

At the heart of all three is a commitment to relational primacy: none rely on absolute 114

background structures, fixed coordinates, or pre-defined geometry. Instead, they seek to 115

reconstruct spacetime from patterns of relation—whether in the form of entanglement 116

(AdS/CFT), causal structure (causal sets), or spin network connectivity (LQG). 117

The relational framework proposed in this work builds on these shared commitments 118

while introducing a fundamental synthesizing principle – Variety-Coherence Optimization 119

(VCO). It draws from the informational and structural insights of these three (and other) 120

paradigms, but grounds emergence in a distinct mechanism: the saturation of coherence 121

among relational primitives. In this picture, geometric structure arises not from assumed 122

symmetries or topological scaffolds, but from the collective phase dynamics that drive 123

the formation of irreducible, saturated patches. These patches encode both adjacency and 124

directed ancestry, providing the foundation for an emergent spacetime architecture. The 125

Venn diagram highlights this synthesis by showing how our model integrates and extends 126

foundational features of each of the three established approaches. This framework does 127

not seek to replace existing quantum gravity approaches, but rather to identify common 128

structural principles across disparate models. 129

The remainder of this paper is organized as follows. In Sec. 3, we define our ontology 130

as a space of relational primitives and develop the suppression kernel based on variety- 131
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Figure 1. Conceptual overlaps among three major quantum gravity approaches—loop quantum
gravity (LQG), AdS/CFT, and causal set theory (CST). The diagram highlights core features specific to
each framework, shared commitments across pairs, and the principle of relational primacy common
to all. This structure provides the foundation for the synthesis introduced in this work.

coherence optimization. Sec. 4 introduces the concept of coherence patches and details 132

the criteria for saturation. In Sec. 5, we formalize the structure of relational faces and 133

describe the propagation rules that lead to a directed architecture in Sec. 6.1. The geometric 134

interpretation via a Foruier duality is developed in Sec. 7. 135

Notation 136

• Dk: label domain k (Polish metric space) with metric dk and Borel measure µk. 137

• L = ∏k Dk: product label space with product measure µ =
⊗

k µk. 138

• wk ≥ 0: weights with ∑k wk < ∞; relational divergence ∆(λ, λ′) = ∑k wk dk(λk, λ′
k). 139

• Tij: max-entropy kernel (row-stochastic); Zi: partition function; β > 0: inverse temper- 140

ature. 141

• θ(i, j) ∈ U(1): phase field; R(P): mean resultant; V(P) = 1 − R(P): variance-like 142

saturation. 143

• P: coherence patch; C: complex of saturated patches; H: directed acyclic hypergraph 144

of patch formation. 145

3. Relational Space and the Structure of Informational Compatibility 146

The foundational entity in this framework is not a particle, spacetime point, or em- 147

bedded field, but an irreducible relational primitive (or coherence unit). What defines 148

them—and allows structure to eventually emerge—is a set of intrinsic labels. We denote the 149

space of all relational primitives by I , whose elements ι ∈ I constitute the non-reducible 150

objects of the theory (see, e.g., [28]). Each ι is ontologically fundamental: it has no internal 151

structure, spatial interpretation, or temporal evolution. It is simply a bare informational 152

unit—a point in the space of relational possibility, each carrying an internal label space that 153

defines how it may participate in coherent structures. 154

To each relational primitive ι ∈ I , we associate an internal label λ(ι) that encodes 155

its intrinsic relational structure. The labels do not represent positions, coordinates, or 156

dynamical variables in spacetime. Rather, they define the internal degrees of freedom 157

by which relational primitives can be relationally compared, akin to the role of quantum 158

reference frames in relational quantum mechanics [28,29]. 159



Version October 2, 2025 submitted to Journal Not Specified 5 of 18

Table 1. Conceptual analogs for relational primitives. While similar in function to known constructs,
their role in this model is distinctly relational.

Analog Similarity Difference

Qubits Internal phase θ, irreducibility,
relational coherence

No Hilbert space, no unitarity,
no defined observable

Spin networks
(LQG)

Discrete, combinatorial,
labeled

Labels are relational and not
embedded in spacetime

Causal set
elements

Fundamental events,
assembled into a poset

Causality is emergent from
coherence, not postulated
axiomatically

Wolfram tokens Symbolic, rule-based,
adjacency-driven

Dynamics arise from
entropy–coherence balance,
not substitution logic

Topos atoms Exist only via contextual
structure

No logical framework, but
similar ontological
minimalism

We define the label function 160

λ : I → L, (1)

which assigns to each relational primitive ι ∈ I a label λ(ι) ∈ L. To make the internal 161

structure of the label space explicit, we write each label as a tuple: 162

λ(ι) = (ℓ1, ℓ2, . . . , ℓn), (2)

where each component ℓk ∈ Dk takes values in a fixed domain Dk appropriate to the 163

informational context. The label space L is therefore a product space, 164

L = D1 ×D2 × · · · × Dn, (3)

with each Dk furnishing a distinct informational dimension for comparison across prim- 165

itives. These domains may be discrete (e.g., Zn), continuous (e.g., R), or drawn from 166

combinatorial and topological structures. 167

This decomposition plays a critical operational role: it enables component-wise eval- 168

uation of relational divergence, ensuring that informational differences are meaningfully 169

and consistently assessed. The tuple λ(ι) thus defines the primitive’s relational profile—a 170

structured specification of its intrinsic features relative to others in the system. 171

No specific structure is imposed on the form of λ, but typical components may include: 172

discrete class identifiers (e.g., representation sectors, symbolic types), algebraic invariants 173

(e.g., parity, charge, spin), and logical or topological indices (e.g., graph coloring, homotopy 174

class). The formulation is intended to be general at this stage, enabling the model to support 175

a broad range of physical and computational interpretations. 176

The divergence between two primitives ιi and ιj is defined as 177

∆(λ1, λ2) = ∑
k

dk(ℓk,i, ℓk,j), (4)

where each dk is a domain-appropriate measure of dissimilarity. For numeric or 178

algebraic components, dk may be the absolute difference |ℓk,i − ℓk,j|; for modular types, 179

a cyclic distance; and for symbolic or categorical components, a binary mismatch. The 180

total divergence is a scalar quantity that vanishes when all label components match and 181

increases with informational disparity. It is symmetric and non-negative, but does not 182

satisfy the triangle inequality—hence, δ is not a metric, but a purely relational comparator. 183
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The divergence function δ plays a central role as a coherence discriminator. Low diver- 184

gence indicates high compatibility and the potential to participate in a common coherent 185

patch; high divergence suggests incompatibility, which suppresses joint stabilization. 186

A central postulate of the framework is that coherence is not auxiliary—it defines exis- 187

tence. A relational primitive ι has no physical meaning in isolation. It becomes ontologically 188

viable only when it participates in a mutually coherent configuration of other primitives. 189

Structure emerges not from imposed geometry, but from the spontaneous coherence of 190

internally compatible informational elements. 191

The Suppression Kernel from Variety-Coherence Optimization 192

When considering how evolution might occur in this relational space, we follow 193

the simple observation that relational systems seek to have the maximize diversity of 194

possible coherent interactions (entropy), while preserving local compatibility (suppression 195

of incoherence). 196

We define a kernel T(λi, λj), which quantifies the potential for coherence between 197

informational states λi and λj. Specifically, we define the relational variety by the Shannon 198

entropy of the kernel weights: 199

Si[T] = −∑
j

Tij log Tij, (5)

where, Tij = T(λi, λj). We constrain the local coherence by 200

∑
j

Tij δij = δ0, (6)

where δ0 ∈ R+ is a fixed scalar threshold that regulates the expected relational divergence. 201

The expectation constraint on divergence means that structure can only emerge when 202

relational coherence is preserved. Without this restriction, maximizing entropy would 203

favor fully delocalized distributions, thereby destroying any meaningful structural align- 204

ment. Fixing the expected divergence ensures that the system explores diversity within 205

a relationally meaningful band, preventing incoherent scattering. This mimics the same 206

structural role as a fixed energy budget in thermodynamic ensembles. Just as a thermal 207

system maximizes entropy under a fixed energy constraint—preventing it from heating into 208

incoherent noise—this framework maximizes relational entropy under a fixed divergence 209

constraint, preserving internal coherence across the informational structure. 210

∑
j

Tij = 1. (7)

L[T] = −∑
j

Tij log Tij + µ

(
∑

j
Tij − 1

)
− β

(
∑

j
Tij ∆ij − ∆

)
, (8)

where µ and β > 0 are Lagrange multipliers and ∆ is the target expected divergence. 211

∂L
∂Tij

= 0 =⇒ log Tij = −1 + µ − β ∆ij. (9)

Tij =
e−β∆ij

Zi
, Zi = ∑

k
e−β∆ik , ∆ = − ∂

∂β
log Zi. (10)

δscale :=
1
β

. (11)
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The suppression kernel Tij is well-defined if the partition function Zi converges for all 212

relational configurations λi ∈ L. This convergence follows from two intrinsic properties of 213

the relational divergence function ∆(λi, λj). First, for any fixed configuration λi, the set of 214

configurations whose divergence from λi is less than a given threshold ∆, namely 215{
λj ∈ L

∣∣ ∆(λi, λj) < ∆
}

,

is finite in the discrete case, or effectively finite in practice in the continuous case due to 216

the rapid decay of the exponential suppression factor exp(−κ ∆ij). Thus, although the 217

total label space L may be infinite or continuous, the number of significantly coherent 218

configurations remains bounded in effect, ensuring that coherence remains concentrated 219

rather than delocalized. 220

Convergence. 221

For continuous or unbounded label spaces, convergence of Zi follows under a mild 222

growth condition on the volume of divergence balls: there exist constants C, a > 0 such 223

that 224

vol
{

λj ∈ L : ∆(λi, λj) ≤ r
}

≤ Cear.

Then Zi < ∞ for all β > a. Absent such a bound, we regard convergence as holding under 225

appropriate regularity assumptions on the label-space measure. 226

In addition, the exponential decay 227

exp
(
−∆(λi ,λj)

δ0

)
suppresses the contribution of highly divergent configurations so sharply that distant 228

relational states contribute negligibly to the partition function. Together, these two features 229

ensure that the sum (or integral) defining Zi converges for all λi ∈ L, without the need for 230

any external cutoff or regularization. The coherence scale δ0 thus functions as a natural, 231

intrinsic cutoff arising from the relational structure itself. This affirms a core principle of 232

the VCO framework: the universe tends to explore relational variety, but only to the extent 233

that local compatibility is maintained. 234

4. Coherence Patches and the Onset of Structure 235

To understand how structure emerges from a fundamentally background-free rela- 236

tional space, we consider what it means for a group of informational configurations to 237

exhibit internal consistency. To do this, we define a coherence patch as a subset of λ in 238

which T(λi, λj) > 0. This condition ensures that no member of the patch is entirely incom- 239

patible with another. The patch is an emergent object: a minimal expression of internal 240

coherence provided by the suppression kernel within the otherwise unstructured relational 241

space. 242

These coherence patches grow through the inclusion of additional primitives, but their 243

internal alignment becomes increasingly difficult to sustain. The suppression kernel decays 244

exponentially with relational divergence, and large patches tend to accumulate internal 245

tension. To that end, we define a phase field as a mechanism that regulates and ultimately 246

limits the growth of patches. 247

We clarify that the phase field in our model is not a conventional dynamical field 248

defined over spacetime, but rather a relational construct defined over coherence-compatible 249

pairs of informational primitives. Specifically, it is a U(1)-valued function θ(ιi, ιj) that 250

encodes internal phase alignment within coherence patches. This relational phase structure 251

is defined over a non-spatiotemporal domain, which we term a relational phase space—a 252
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configuration space of pairwise informational agreement. More precisely, the phase field is 253

a function of the form: 254

θ : I × I → U(1)

where I denotes the set of irreducible relational primitives, and θ(ιi, ιj) assigns a phase 255

value in the unit circle group U(1) to each pair of primitives ιi, ιj ∈ I. Upon reaching 256

a critical coherence threshold (θ̄ = π), the accumulated phase structure is projected via 257

Fourier duality into emergent spatial geometry. The use of phase field and phase space in this 258

context is thus operational and structural, rather than geometric or canonical. 259

More specifically, for a given patch P, we define the mean pairwise phase deviation as 260

R(P) :=

∣∣∣∣∣∣∣∣
1
M ∑

(i,j)∈P
i<j

e i θ(i,j)

∣∣∣∣∣∣∣∣, 0 ≤ R(P) ≤ 1, (12)

where 261

M = #{(i, j) ∈ P : i < j}

is the number of distinct pairs in the patch. 262

We define the phase dispersion as 263

V(P) := 1 − R(P), (13)

and say that a patch saturates when V(P) ≥ Vc for a fixed threshold Vc ∈ (0, 1]. 264

which captures the average phase spread across the patch. This quantity plays a 265

central role in coherence dynamics: as more primitives are added, the patch becomes less 266

tightly aligned in relational phase space, and θ̄(P) increases. Small, highly compatible 267

patches exhibit low phase deviation and can grow by incorporating additional elements 268

with similar relational characteristics. However, this growth is self-limiting. 269

Once the internal phase spread reaches a critical value, the structure can no longer 270

sustain coherence across all its members. As described above, a limit is reached beyond 271

which the coherence of a patch cannot be preserved. This defines a saturation point: a 272

transition where the patch can no longer grow without violating the mutual coherence that 273

enabled its formation. The mechanism governing this transition is rooted in the patch’s 274

internal phase structure. Once the dispersion V(P) = 1 − R(P) exceeds a fixed threshold 275

Vc, destructive interference overwhelms constructive alignment and the patch stabilizes 276

into an irreducible structure. 277

In this way, coherence patches mark the earliest emergence of form from pure infor- 278

mational compatibility. They are not externally imposed or statically defined, but rather 279

assemble dynamically through local accumulation of mutual coherence. Their growth is 280

regulated by the coherence field and the relational divergence, and they terminate naturally 281

when internal agreement can no longer be maintained. Saturation thus signals not failure, 282

but completion: the coherent configuration has reached the limit of its internal consistency. 283

5. Saturation and the Stabilization of Structure 284

As described in Sec. 4, coherence within a patch is quantified by the resultant R(P) 285

and its dispersion V(P) = 1 − R(P). As additional primitives are incorporated, alignment 286

decreases and dispersion grows. When V(P) exceeds a fixed threshold Vc, the patch can no 287

longer sustain global coherence and saturates into an irreducible unit. 288

This criticality is not imposed externally but follows from the compact nature of the 289

U(1) phase space: once dispersion becomes too large, destructive interference overwhelms 290
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constructive alignment. Saturation therefore marks the boundary between viable relational 291

growth and collapse. Coherence does not fade gradually—it halts abruptly when the 292

dispersion threshold is crossed. The resulting saturated unit cannot admit further elements 293

without breaking internal consistency. 294

6. The Relational Polytope 295

In recent developments across high-energy theory, positive geometries have emerged 296

as powerful tools for encoding physical constraints in a purely combinatorial and geometric 297

language [6–9]. These structures reveal that many aspects of quantum field theory and 298

cosmology can be captured through the intrinsic geometry of admissible configurations. In 299

a similar spirit, we introduce a relational polytope, PR, to describe the coherent organization 300

of relational primitives—not in an ambient space, but as a combinatorial object encod- 301

ing adjacency, ancestry, and saturation relationships among irreducible patches. Unlike 302

conventional polytopes embedded in Rn, the relational polytope arises from internal in- 303

formational constraints, and its faces represent saturated coherence patches rather than 304

spatial simplices. This approach provides a geometric scaffold for coherence propagation, 305

entanglement lineage, and emergent causal structure within a background-free framework. 306

The result is a combinatorial structure whose ‘faces’ are coherent patches and whose 307

adjacency structure is induced by shared ancestry and saturation rules. Each relational 308

face, or R-face, represents a coherence-saturated region, and R-faces are adjacent if they 309

share informational ancestry or mutually coherent boundaries. Because saturated patches 310

emerge through local, adjacency-preserving updates, and no patch may overlap or subsume 311

another, the collection of all patches defines a tiling of relational space. 312

As coherence propagates, new patches are seeded by existing faces, producing a 313

directed network of R-faces. This network forms the backbone of the polytope’s growth, 314

and encodes both causal order and relational structure. In later sections, this polytope will 315

serve as the domain from which geometry, tiling, and entanglement arise. 316

We represent a finite subset of such labeled states as a set of vertices V = {vi}, where 317

each vi corresponds to a relational primitive ιi, and carries its label λi = λ(ιi). This 318

shift does not endow the elements with any new geometric status. The representation as 319

vertices is introduced solely to support the construction of coherent subsets whose internal 320

structure can be analyzed. That is, a patch P ⊂ V is coherent if for all vi, vj ∈ P, we have 321

T(λi, λj) > 0. 322

The stabilized subset is what we identify as an R-face. It is not merely a coherent 323

patch—it is a structure that has crystallized, reaching the irreducible limit of relational 324

compatibility. Beyond this point, it can neither grow nor dissolve without violating the 325

coherence dynamics that brought it into existence. Its informational agreement is complete, 326

and its structure is defined. 327

To characterize an R-face more precisely, we now formalize the criteria that distinguish 328

such a structure. Let F ⊂ V be a finite subset of labeled vertices. Then F qualifies as a 329

relational face if it satisfies the following conditions, taken together and not in isolation. 330

First, all members of F must exhibit nonzero mutual coherence. The suppression 331

kernel T(λi, λj) must be finite and strictly positive for every pair of distinct elements in 332

F. This ensures that no configuration in the face is incoherent with any other. Second, 333

the face must exhibit a consistent internal relational structure, characterized by a well- 334

defined representative phase, a dominant or invariant symmetry class, and a coherent 335

set of conserved quantities. These attributes must be unambiguous and consistent across 336

the patch, ensuring compatibility with the mutual coherence condition. Third, the face 337

must be non-degenerate. Its internal structure must not be contradictory, and must not 338

admit multiple or ill-defined phase representatives, parity labels, or invariant components. 339



Version October 2, 2025 submitted to Journal Not Specified 10 of 18

Finally, the face must be irreducible: no proper subset of F may satisfy the same structural 340

criteria. The coherence and internal consistency of the face cannot be attributed to any 341

smaller grouping of its members. 342

An R-face, then, is a minimal, saturated unit of structure. It is the endpoint of relational 343

accumulation, and the seed of higher-order combinatorial form. In the sections that follow, 344

we will show how these saturated faces interconnect and propagate coherence forward 345

into the relational space. Their interrelation defines a new layer of emergent structure: 346

a directed architecture of stable coherence that encodes not only compatibility, but the 347

irreversible passage of time. 348

6.1. Coherence Propagation and the Emergence of the Directed Architecture 349

In the fully emergent formulation of the framework, no combinatorial structure is 350

assumed in advance. Each R-face arises through local coherence accumulation among 351

relationally labeled configurations. The propagation of coherence from one face to another 352

is likewise governed by internal relations alone. There is no global topology, no coordinate 353

system, and no external time parameter. Structure grows from coherence, one saturated 354

patch at a time. 355

After a patch P has crystallized into an R-face Fi, each vertex v ∈ Fi defines a local 356

neighborhood in relational space, consisting of configurations that remain compatible 357

under the suppression kernel. We define the forward coherence neighborhood of v as 358

N(v) =
{

v′ ∈ V \ Fi
∣∣ T(λ(v), λ(v′)) > 0

and v′ is not yet saturated} (14)

This neighborhood represents the set of relationally accessible configurations that 359

may participate in new coherence patches seeded from v. It is determined entirely by the 360

suppression kernel T, which is a function of the intrinsic labels alone. 361

New coherence patches are then dynamically assembled via the suppression kernel 362

‘testing’ subsets of N(v) , along with the seeding vertex v, for mutual compatibility and 363

eventual saturation. If the accumulated relational phase among such a subset reaches the 364

critical value θ̄ = π, and if the patch satisfies irreducibility, a new R-face Fj is formed. This 365

crystallization event is a direct descendant of the seed face Fi, and we denote this relation 366

as a directed link Fi → Fj. 367

This process iterates locally. From every vertex in a saturated R-face, new neighbor- 368

hoods are scanned and new patches may form. Each successful saturation event extends the 369

structure outward, preserving local coherence but introducing global order. The resulting 370

architecture is a directed acyclic hypergraph (DAH), built from relational ancestry rather than 371

imposed connections. Each node corresponds to a saturated R-face and each directed edge 372

reflects a coherence propagation path through relational space. This ordering was strongly 373

motivated by results in causal set theory (CST), as introduced by Bombelli, Lee, Meyer, 374

and Sorkin [10], which modeled spacetime as a discrete partially ordered set where causal 375

structure is fundamental. In our framework, this similar causal architecture emerges from 376

the propagation of coherence through saturated patches. This process yields the DAH 377

structure akin to a causal set, but grounded in informational compatibility. As such, it 378

invites reinterpretation of results from CST and causal entropy bounds [13,20] in terms of 379

relational saturation and coherence dynamics. 380

The DAH encodes both the structure and the history of emergence. It is directed, 381

because saturation is irreversible: once coherence collapses, the structure is fixed. It is 382

acyclic, because no face can form from another without breaking the coherence hierarchy 383

established by prior saturation events. And it is hypergraphic, because each R-face may 384
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seed multiple subsequent faces, and each new face may draw coherence from more than 385

one ancestor. Crucially, a coherence history is fixed per R-face, but the primitive might still 386

participate in new, orthogonal coherence contexts. 387

This relational growth mechanism defines a unique kind of locality, where each R-face 388

arises only through coherence inherited from an existing face. No face can crystallize 389

spontaneously or at random and coherence must be transmitted through compatible kernel 390

values from previously saturated configurations. This guarantees that all growth proceeds 391

from existing structure, and that the relational space expands in a coherence-preserving, 392

causally ordered sequence. 393

In this way, the DAH provides not only the structural skeleton of the emergent system, 394

but also a holds the ‘memory’ of its temporal unfolding. Causal direction, irreversibility, 395

and relational locality all emerge naturally from the propagation rules encoded in the 396

suppression kernel and the saturation condition. The model constructs its own dynamical 397

history—without invoking a background time, metric, or spacetime manifold. 398

7. Geometry from Phase: Spectral Projection and Spatial Tiling 399

At this stage, no geometric content has yet been invoked and the structure remains 400

entirely relational. However, a critical transition occurs once an R-face saturates. Prior to 401

saturation, the coherence field θ(ιi, ιj) ∈ [0, 2π) governs the internal alignment of the patch, 402

acting as a dynamical register of relational compatibility. These phase values accumulate 403

over paths of coherence propagation, and their spread determines the stability of the 404

structure. 405

When the average pairwise phase deviation reaches the critical value 406

R(P) :=

∣∣∣∣∣∣∣∣
1
M ∑

(i,j)∈P
i<j

e i θ(i,j)

∣∣∣∣∣∣∣∣ ∈ [0, 1], M = #{(i, j) ∈ P : i < j}, (15)

we define 407

V(P) := 1 − R(P), (16)

and declare saturation when V(P) ≥ Vc for a fixed Vc ∈ (0, 1]. At this point, coherence 408

collapses. As established in Section 5, this is not merely a numerical threshold but an 409

analytic boundary encoded in Euler’s identity, eiπ + 1 = 0. Beyond this point, destructive 410

interference dominates, and no further elements can be added without destabilizing the 411

configuration. At this juncture, a saturated R-face has reached a condition of internal 412

irreducibility: its growth halts, and its coherence becomes structurally fixed. 413

To continue representation beyond this coherence collapse, the model undergoes a 414

transformation—a Fourier projection. The internal relational structure of a saturated patch is 415

captured by a phase coherence distribution 416

ϕP(θ) := ∑
ιi ,ιj∈P

δ(θ − θ(ιi, ιj)), (17)

which encodes the aggregate interference structure over the patch. This distribution is 417

compactly supported on [0, 2π) and reflects the full phase content of the R-face. 418

We define the emergent spatial wavefunction via Fourier transform: 419

φ̂P(m) =
1

2π

∫ 2π

0
φP(θ) e−imθ dθ =

1
2π ∑

(i,j)∈P
e−im θ(i,j), m ∈ Z, (18)
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where x ∈ R is interpreted as an emergent spatial coordinate. This map reinterprets 420

phase interference as spatial localization: what had previously been oscillatory coherence 421

in relational phase space becomes separation in emergent space. The transformation is 422

not imposed, but necessitated by the collapse of coherence. Saturation demands a new 423

representation. Geometry arises as the dual image of coherence. In this way, space is 424

necessary to accommodate increasing variety. 425

This duality also imposes a relational uncertainty principle. Since the phase coherence 426

distribution ϕP(θ) is compactly supported on [0, 2π), its Fourier transform ψP(x) must 427

obey the standard uncertainty relation: 428

∆θ · ∆x ≥ 1
2

, (19)

where ∆θ characterizes the width of coherence in phase space and ∆x its spatial localization. 429

At the saturation boundary θ̄ = π, phase uncertainty reaches its maximal allowable spread, 430

and ψP(x) becomes correspondingly localized. This lower bound defines the smallest 431

resolvable spatial tile, linking the Planck scale to the collapse of coherence. 432

This projection acts on a coherence field prior to geometry. It preserves background 433

independence and inherits its structure entirely from internal phase dynamics. Saturated 434

R-faces thus tile emergent space not by physical embedding, but by spectral distinction. 435

Adjacency in this space corresponds to overlap in phase ancestry: if two R-faces share a 436

coherence lineage, their spatial wavefunctions ψP(x) exhibit correlated localization. 437

This structure defines a relational tiling: each R-face corresponds to a discrete spatial tile, 438

and their connectivity reflects coherence ancestry through the directed acyclic hypergraph. 439

Even when multiple faces crystallize from a shared boundary, their spatial identities are 440

inherited from phase structure and remain entangled through spectral adjacency. Geometry 441

arises from coherence propagation rather than distance. 442

The emergent space defined by this process is discrete, spectral, and causally scaffolded. 443

The Fourier transform acts as the boundary map between pre-geometric coherence and 444

post-saturation structure. The DAH becomes a geometric scaffold: a tiling of saturated, 445

relationally locked structures, joined by their shared causal and informational past. In 446

this framework, what appears as spatial adjacency is the spectral shadow of relational 447

coherence. 448

7.1. Justification of the Fourier Projection 449

The analytic transition from relational phase to emergent spatial structure is governed 450

by spectral projection. When a coherence patch saturates at θ̄ = π, its internal dynamics 451

cease to evolve. The accumulated interference has reached a fixed point, and no further 452

growth is possible within the phase representation. At this stage, the Fourier transform 453

emerges as the unique and necessary continuation1. This necessity is grounded in three 454

key features of the model: 455

(i) Collapse at Criticality: At θ̄ = π, the coherence field becomes maximally disordered. 456

The phase contributions across the patch destructively interfere, and the suppression kernel 457

degenerates. This collapse is not numerical but structural: the relational representation 458

no longer supports further differentiation. The Fourier transform resolves this by re- 459

representing the saturated configuration as a localized amplitude distribution in a conjugate 460

1 We emphasize that the Fourier projection is not claimed to be the only possible route to emergent spatial
structure in this framework. It is, however, the natural linear continuation of the phase coherence field given
the U(1) structure and the translation-invariant suppression kernel. Other embedding schemes, such as those
based on correlation functions (see [43]) or nonlinear mappings of relational ancestry, could also be explored.
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domain. The interference kernel ϕP(θ) is mapped to ψP(x), which defines a projective 461

geometry free of phase singularities. 462

(ii) Spectral Irreducibility: Saturated patches cannot be refined by further phase anal- 463

ysis. The only remaining operation is spectral decomposition. The Fourier transform is 464

the unique linear map that (a) preserves total informational content, (b) projects from a 465

compact domain to an extended one, and (c) diagonalizes translation-invariant convolution 466

operators such as the suppression kernel. No other continuation satisfies these constraints 467

while preserving background independence and informational closure. 468

(iii) Structural Continuity: The coherence kernel prior to saturation is governed by 469

phase-based suppression: T(θi, θj) ∼ e−|θi−θj |/δ0 . After saturation, the spatial coherence 470

kernel becomes its spectral dual. 471

T̃(m) =
1

2π

∫ 2π

0
T(∆θ) e−im∆θ d(∆θ) (20)

Translation-invariant kernels T(∆θ) on U(1) are diagonal in the Fourier series basis 472

with eigenvalues given by Eq. (20). This expression is not imposed; it is inherited. The 473

coherence decay scale ∆ij = δscale remains unchanged, reflecting the critical bandwidth 474

of the saturated phase distribution. The Fourier transform transmits this structure into 475

geometry without introducing new parameters. 476

Proposition (Uniqueness of Fourier-like Emergence). 477

Let ϕ(θ) be a real-valued coherence distribution defined on the compact phase space 478

θ ∈ [0, 2π), with structure defined by modular interference. Any linear, invertible, and 479

information-preserving map ϕ 7→ ψ into a non-compact space x ∈ R that diagonalizes 480

translation-invariant relational kernels must be (up to unitary equivalence) the Fourier 481

transform. 482

Proof sketch. 483

Let ϕ(θ) ∈ L2([0, 2π)), with inner product: 484

⟨ϕ, ϕ′⟩ =
∫ 2π

0
ϕ(θ) ϕ′(θ) dθ.

We assume a linear map F : L2([0, 2π)) → L2(R) that satisfies: 485

1. Unitarity: ⟨ϕ, ϕ′⟩ = ⟨F [ϕ],F [ϕ′]⟩, 486

2. Translation compatibility: convolution with a phase-invariant kernel T(θi − θj) maps to 487

multiplication in the dual space: F [T ∗ ϕ] = T̃(x) · ψ(x), 488

3. Minimal spectral support: compact phase corresponds to unbounded localization (dual 489

decay). 490

These are exactly the defining properties of the Fourier transform as the unitary operator 491

that diagonalizes circulant kernels on U(1). By the spectral theorem, no other linear 492

transform on L2([0, 2π)) preserves these properties and maps into an extended domain R 493

while retaining inner product structure. 494

Therefore, the Fourier transform is the unique (modulo basis choice) structure- 495

preserving continuation of compact phase dynamics into non-compact geometric localiza- 496

tion. □ 497

Thus, the Fourier projection is not an optional maneuver. It is the canonical map 498

that preserves internal relational symmetry, resolves phase degeneracy, and reveals the 499

latent spatial structure encoded in coherence. It does not assume geometry—it derives it. 500

This transition from interference to localization defines the boundary between relational 501
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dynamics and spatial representation, and marks the moment when informational agreement 502

becomes geometric form2. 503

7.2. Geometric Signature from Phase 504

The projection of saturated relational coherence into geometry produces two distinct 505

structural layers: spatial tiling and causal order. This projection is a Fourier dualization of 506

coherence information—transforming internal interference into external localization. Once 507

a coherence patch saturates, the accumulated phase structure becomes analytically closed 508

and must be re-expressed in its conjugate representation. The Fourier transform performs 509

this task, translating relational alignment into spatial localization and coherence ancestry 510

into temporal structure. 511

Euclidean spatial tiling. 512

The internal phase distribution ϕP(θ) of a saturated R-face defines its coherence 513

structure. Its Fourier dual ψP(x) localizes this structure in an emergent spatial coordinate 514

x ∈ R, giving rise to a discrete Euclidean geometry. Since phase spread is bounded by 515

θ̄ < π, the associated spatial support is finite. The suppression kernel becomes a real 516

exponential (Eqn. 20, inducing spatial adjacency and forming a tiling in the dual space. 517

This tiling is not metric-imposed but coherence-derived: spatial separation encodes the 518

degree of spectral orthogonality between saturated patches. 519

Lorentzian causal order. 520

The directed acyclic hypergraph (DAH) defines a relational ancestry structure between 521

R-faces. Let F denote the set of all saturated R-faces. Define a binary relation ≺ such 522

that Fi ≺ Fj if Fj was seeded by one or more coherence-preserving vertices from Fi. This 523

relation is asymmetric, transitive, and irreflexive, forming a partial order. The DAH 524

therefore defines a causal structure not through spacetime metrics, but through coherence 525

propagation. Temporal separation is defined by path length in the DAH: 526

∆tij ∝ length(Fi → Fj), ∆xij ≤ c ∆tij, (21)

where a finite constant c > 0 plays the role of a maximal coherence propagation speed. 527

Resolution: Layered Emergence. 528

There is no conflict between spatial tiling and temporal order. The coherence projection 529

yields a layered structure: 530

PR −→ Rd
Eucl × (F ,≺), (22)

where PR is the relational polytope of coherence-saturated R-faces, and the right-hand side 531

expresses its two emergent facets: 532

• Rd
Eucl: a spatial domain formed by the Fourier duals ψP(x) of saturated phase distri- 533

butions, 534

• (F ,≺): a causal order over saturated patches, defined by coherence ancestry in the 535

DAH. 536

This projection reveals that what appears as spatial adjacency is in fact spectral prox- 537

imity, and what appears as temporal succession is the record of stabilization. The poset 538

(F ,≺) encodes an irreversible informational topology: each R-face is fixed by a past co- 539

2 We note that while the present treatment focuses on the U(1) phase structure, a natural extension involves
considering higher symmetry groups such as SU(2), particularly if relational primitives possess spin-like or
multi-component degrees of freedom. We defer exploration of SU(2)-based Fourier duality and its implications
for emergent geometry to future work.
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Table 2. Emergent spacetime layers

Component Origin Signature

Spatial coordinates Fourier projection of phase Euclidean
Temporal order DAH edge direction Fi ≺ Fj Lorentzian
Lightcone structure a finite constant c > 0 constraint Causal

herence event, and coherence can only propagate outward. Time, in this model, is not a 540

dimension—it is the structure of relational ancestry. 541

Three consequences follow. First, the projection from relational phase into geometry 542

is not an imposed analytic continuation but a spectral emergence map. Second, causal 543

structure arises independently through coherence ancestry and path dependence in the 544

DAH, avoiding any tension with Euclidean tiling. Third, the coherence threshold θ̄ = π 545

acts as an entropic bound, matching holographic scaling relations [2] without invoking 546

Lorentzian metric structure. 547

In this way, the apparent dichotomy between space and time is dissolved. Both emerge 548

from coherence, but in different modalities: space through spectral decomposition, time 549

through irreversible ancestry. The DAH becomes a scaffold for both: tiling space through 550

coherence duals, and ordering time through stabilization memory. Spacetime, in this model, 551

is not a manifold—it is the layered record of relational saturation. 552

Figure 2 schematically illustrates the sequential emergence of spacetime from 553

background-independent informational primitives: initially unstructured relational el- 554

ements become linked by mutual compatibility, forming a coherence kernel that organizes 555

into saturated coherence patches. When internal phase deviations reach the critical thresh- 556

old θ̄ = π, these patches crystallize into irreducible units (R-faces). The projection of their 557

internal relational phase structure via Fourier transform then yields emergent spatial local- 558

ization and geometry, with spectral proximity encoding adjacency and relational ancestry 559

defining causal order. 560

Figure 2. Schematic representation of the emergence of spacetime from informational coherence.
The process begins with relational primitives—irreducible label-bearing elements in a background-
independent substrate. Relational compatibility among these elements leads to the formation of a
coherence kernel, illustrated as a connectivity graph. As coherent interactions accumulate, coherence
patches form and grow until they reach a critical phase deviation, after which they saturate. The
final stage involves a spectral projection (via Fourier transform), from which spacetime geometry is
seen to emerge.

8. Shared Features with Quantum Gravity Paradigms 561

The framework presented in this paper offers a novel approach to quantum gravity, 562

grounded in informational coherence and relational saturation. This perspective resonates 563

with broader efforts to reconstruct spacetime from non-geometric principles. A closely 564

related formal precedent is the AdS/CFT correspondence [1,19], wherein gravitational 565

geometry in anti-de Sitter space emerges from a lower-dimensional conformal field theory. 566
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In that context, bulk geometry is encoded in patterns of entanglement across the boundary, 567

with the Ryu–Takayanagi formula relating entanglement entropy to minimal surfaces in 568

the bulk [2,12]. The present framework draws from this spirit, though it proceeds without 569

invoking conformal symmetry or a prescribed holographic duality. Here, the effective 570

boundary arises from the causal ancestry structure within the relational polytope, and 571

overlapping paths in the adjacency graph fulfill the role of minimal surfaces. Entanglement 572

arises from shared relational origin rather than computation within a dual field theory. 573

This conceptual alignment extends further. The exponential decay of the suppression 574

kernel, T ∼ e−δ/δ0 , ensures that coherent correlations remain intrinsically localized. This 575

behavior reflects the holographic principle’s assertion that physical information is encoded 576

on boundaries. The saturation threshold at θ̄ = π further enforces localization by trun- 577

cating long-range phase coherence. This parallels how tensor networks realize area-law 578

entanglement scaling through limited entanglement propagation [4,16]. In addition, the 579

irreversible crystallization of R-faces functions analogously to a decoding process: unstable 580

phase fluctuations, conceptualized as errors, transform into stable spatial tiles representing 581

logical states. The directed acyclic hypergraph (DAH) records a fault-tolerant history, with 582

each saturation event projecting noisy relational data into geometrically robust structures. 583

These connections suggest that the model intrinsically incorporates non-local redundancy 584

and entropy scaling, features central to both AdS/CFT and quantum computing-inspired 585

approaches to quantum gravity. 586

Causal set theory (CST) provides another relevant precedent. In the foundational 587

work of Bombelli, Lee, Meyer, and Sorkin [10], spacetime is modeled as a discrete partially 588

ordered set, with causal structure captured by the order relation. In the present framework, 589

causal order arises dynamically through the directed architecture of saturated coherence 590

patches, which naturally form a causal set generated through coherence propagation. This 591

opens avenues for reinterpreting results from causal set cosmology and entropy bounds 592

[13,20] in terms of relational saturation and coherence dynamics, potentially yielding new 593

insights into constraints on causal patch growth. 594

Loop quantum gravity (LQG) and spin foam models similarly regard spacetime as a 595

combinatorial structure built from quantum excitations [14,15]. The emphasis on discrete 596

area elements and fundamental quanta of geometry resonates with the interpretation 597

of saturated R-faces in this framework. Here, discreteness arises from relational phase 598

coherence and informational thresholds, providing an emergent origin for quantization 599

rather than one rooted in Hilbert space structures or operator dynamics. 600

Recent models developed by Wolfram and collaborators [18,21] propose that space 601

and time emerge from the evolution of hypergraphs governed by local rewriting rules. 602

These approaches share a focus on causal structure and discrete evolution with the present 603

model. However, here the dynamics are governed by internal compatibility and coherence 604

propagation. The DAH arises through relational criticality, without reliance on externally 605

imposed update procedures. 606

Finally, the study of combinatorial and geometric structures in scattering amplitudes, 607

particularly through the amplituhedron and positive geometries [6,7,9], has demonstrated 608

the power of emergent structures in encoding physical laws. Though developed in a 609

distinct context, this work exemplifies a broader principle echoed here: the emergence 610

of geometric form from deeper combinatorial and relational structure. In this light, the 611

relational polytope introduced in this framework may offer an analogous object, a geometry 612

projected from relational coherence rather than embedded within spacetime. 613
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9. Conclusions 614

This work presents a relational, information-theoretic framework in which spacetime 615

emerges from the interplay of informational diversity and coherence. The central organizing 616

principle, Variety–Coherence Optimization, balances local variation with global compatibility 617

and serves as a structural foundation that cuts across multiple approaches to quantum 618

gravity. 619

We have shown how coherent relational configurations stabilize into irreducible units, 620

termed R-faces, once a critical phase threshold is reached. These structures propagate 621

coherence through a directed acyclic hypergraph (DAH), generating an emergent causal 622

order grounded in relational ancestry. A Fourier duality then maps the saturated phase 623

structure into discrete spatial geometry, producing a tiling that encodes adjacency through 624

coherence lineage. 625

This paper should be understood as a conceptual and operational proof of concept for 626

emergent spacetime, rather than a fully realized physical model. Extending this framework 627

to incorporate matter, recover known gravitational dynamics, and connect more directly to 628

observational phenomena remains an open and promising direction for future work. 629
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