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Abstract

We propose a relational framework in which spacetime emerges from informational co-
herence rather than presupposed geometry. The central mechanism, Variety—Coherence
Optimization, maximizes diversity of relational states while preserving local compatibility.
This yields a suppression kernel from which coherent patches form and stabilize once a
phase-dispersion threshold is reached. Saturated patches act as irreducible units whose
propagation defines a directed acyclic hypergraph, providing causal order without back-
ground structure. A Fourier-series duality then maps internal phase structure into discrete
spatial geometry, offering a spectral notion of locality. The framework reproduces fea-
tures associated with holography and causal sets while remaining model-independent,
highlighting coherence saturation as a unifying principle for emergent spacetime.

Keywords: coherence; emergent geometry; Fourier spectrum; information theory

1. Background

A central question in contemporary theoretical physics is whether the geometry
of spacetime is a fundamental construct or an emergent phenomenon arising from a
deeper pre-geometric substrate. This question lies at the heart of quantum gravity research
and has motivated a wide range of approaches that seek to reconstruct spacetime from
more primitive, often relational, degrees of freedom. Despite their formal and conceptual
differences, these frameworks converge on the idea that spacetime may not be an input to
the theory but a derived structure.

One prominent approach is holographic duality, most notably realized in the AdS/CFT
correspondence [1], wherein a theory of quantum gravity in a bulk anti-de Sitter spacetime
is dual to a lower-dimensional conformal field theory defined on its boundary. Within this
framework, geometric notions such as distance and connectivity are believed to emerge
from quantum entanglement patterns in the boundary theory [26,27]. More specifically, the
Ryu-Takayanagi formula makes this connection precise by relating entanglement entropy
to the area of minimal surfaces in the bulk [2]. Subsequent developments have provided
further evidence that bulk spacetime is encoded in entanglement structure, rather than
prescribed independently [3-5].

Parallel insights have arisen from the study of scattering amplitudes in quantum field
theory. It has been shown that certain classes of amplitudes admit simple representations
in terms of combinatorial and geometric objects such as the amplituhedron, associahedron,
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and cosmological polytopes [6-9]. What is remarkable is that these geometric construc-
tions generate amplitudes without relying on the usual formulation involving particles
moving through space and time. Instead, key physical principles such as locality and
unitarity emerge from the internal structure of the geometry itself. This suggests that the
underlying rules governing interactions may be more fundamentally tied to geometric and
combinatorial principles than to traditional spacetime-based dynamics.

A contrasting line of research is causal set theory (CST), which proposes that spacetime
is not continuous but fundamentally discrete, consisting of elementary events organized
into a partially ordered set where the order encodes causal relations [10]. In this framework,
the familiar continuum of spacetime geometry is not fundamental but emerges in an
appropriate coarse-grained limit of the discrete structure. The causal order captures the
light-cone structure of spacetime, while volume is encoded by counting elements—that is,
the number of events corresponds to the spacetime volume in Planck units [11,20]. This
approach is motivated by the insight that causality and discreteness together might form
a minimal substrate from which geometry can emerge, without invoking background
manifolds or coordinate systems. CST has developed tools to reconstruct manifold-like
behavior from the order-theoretic data alone, including approximate dimension estimators
[22], methods to recover curvature [23], and phenomenological models of cosmic expansion
and entropy bounds [13,24]. Overall, CST exemplifies a fundamentally discrete approach
in which spacetime is built from the bottom up—from individual events and their causal
links—offering a radical departure from continuum-based field theories and aligning with
the broader emergentist paradigm.

A related paradigm, motivated by the computational universe hypothesis, considers
that physical law might arise from the evolution of symbolic systems governed by local
rewriting rules. In this view, space, time, and causality are emergent constructs resulting
from the iterative application of minimal substitution operations on discrete combinato-
rial structures. Recent work in hypergraph models and computational frameworks has
proposed that such processes may underlie both quantum mechanics and gravity [18,21].

This is just a sampling of the approaches that exemplify a shift away from treating
spacetime as a fundamental arena and toward viewing it as a manifestation of deeper,
often discrete and relational, organizational principles (e.g., [31,34-38]). The convergence
of insights from holography, positive geometry, causal order, and symbolic computation
suggests that it may be possible to formulate a unified framework in which spacetime and
its attendant structures arise from compatibility conditions among more basic informational
elements.

2. Introduction

In this work, we propose a new framework within the paradigm of non-spatiotemporal
foundations, grounded in the idea that physical structure originates from relational com-
patibility among primitive informational elements. We stress that the program presented
herein does not seek to supplant existing paradigms. Our goal is to identify a unifying
principle that may underlie their apparent successes.

Our central hypothesis is that space, time, and topology are not fundamental con-
structs, but rather stabilized expressions of a dynamic balance between the promotion of
local informational diversity and the preservation of global coherence. We argue that this
principle—formulated as a competition between relational variety and order—can give
rise to rich structural and dynamical behavior without the assumption of a background
spacetime.

At a foundational level, we propose that geometric and temporal structure emerge
as the result of deeper patterns of intrinsic relations between discrete, label-bearing infor-
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mational elements. As such, physical order—such as the appearance of spatial locality
or causal flow—emerges from an interplay between diversity and coherence within a
relational substrate. Under certain conditions, local regions of high compatibility organize
into stable structures, which then act as seeds for further structural development. This
process gives rise to an evolving network of relational configurations that encodes both
the architecture and temporal unfolding of emergent space. Therefore, geometry and time
are not imposed externally, but emerge through internal transitions within the relational
system. As coherent structures accumulate, a directional pattern of ancestry develops,
yielding a natural notion of temporal order. Spatial organization, meanwhile, appears
through a reinterpretation of internal relational degrees of freedom, effectively projecting a
geometric scaffold from patterns of informational agreement.

This framework can be seen as a synthesis of core insights from the approaches to
quantum gravity described is Sec.1. More specifically, like holographic duality, it suggests
that geometry is deeply connected to entanglement. It also incorporates the causal primacy
emphasized in CST, yet derives causal order dynamically from relational ancestry rather
than postulating it axiomatically. The emphasis on emergent locality and combinatorial
structure was motivated by the developments in positive geometry, such as associahedra
and cosmohedra. Finally, the use of discrete, rule-governed informational updates resonates
with symbolic and computational models, while grounding the emergence of structure
in optimization principles rather than rewriting rules. In this sense, our proposal aims to
offer a unifying perspective that retains the strengths of each approach while advancing
a new organizing principle: the emergence of space and time from the interplay between
informational diversity and relational coherence.

With respect to Fig. 1, we compare three of the major paradigms within the contempo-
rary landscape of quantum gravity: the AdS/CFT correspondence, CST, and loop quantum
gravity (LQG). Each of these frameworks offers a distinct approach to the emergence of
spacetime. Despite their differences, these approaches exhibit key areas of conceptual
overlap. Both AdS/CFT and LQG treat spacetime as an emergent phenomenon rather
than a primitive manifold. Causal set theory and LQG both rest on discrete structures
and reject the continuum as fundamental. AdS/CFT and causal sets, though coming from
different angles, each deny the primacy of a smooth manifold—either replacing it with a
lower-dimensional quantum theory or with a discrete causal order.

At the heart of all three is a commitment to relational primacy: none rely on absolute
background structures, fixed coordinates, or pre-defined geometry. Instead, they seek to
reconstruct spacetime from patterns of relation—whether in the form of entanglement
(AdS/CFT), causal structure (causal sets), or spin network connectivity (LQG).

The relational framework proposed in this work builds on these shared commitments
while introducing a fundamental synthesizing principle — Variety-Coherence Optimization
(VCO). It draws from the informational and structural insights of these three (and other)
paradigms, but grounds emergence in a distinct mechanism: the saturation of coherence
among relational primitives. In this picture, geometric structure arises not from assumed
symmetries or topological scaffolds, but from the collective phase dynamics that drive
the formation of irreducible, saturated patches. These patches encode both adjacency and
directed ancestry, providing the foundation for an emergent spacetime architecture. The
Venn diagram highlights this synthesis by showing how our model integrates and extends
foundational features of each of the three established approaches. This framework does
not seek to replace existing quantum gravity approaches, but rather to identify common
structural principles across disparate models.

The remainder of this paper is organized as follows. In Sec. 3, we define our ontology
as a space of relational primitives and develop the suppression kernel based on variety-
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Conceptual Overlap in Quantum Gravity Paradigms

LQG AdS/CFT

Emergent

Spin network EPEEE R Holographic
quantization entanglement

Relational
primacy

No
fundamental
manifold

Discrete
structures

Axiomatic
causal order

Causal Sets

Figure 1. Conceptual overlaps among three major quantum gravity approaches—loop quantum
gravity (LQG), AdS/CFT, and causal set theory (CST). The diagram highlights core features specific to
each framework, shared commitments across pairs, and the principle of relational primacy common
to all. This structure provides the foundation for the synthesis introduced in this work.

coherence optimization. Sec. 4 introduces the concept of coherence patches and details
the criteria for saturation. In Sec. 5, we formalize the structure of relational faces and
describe the propagation rules that lead to a directed architecture in Sec. 6.1. The geometric
interpretation via a Foruier duality is developed in Sec. 7.

Notation

* Dy label domain k (Polish metric space) with metric d; and Borel measure .

* L =TI; Dy: product label space with product measure y = @y .

*  wi > 0: weights with ) wy < oo; relational divergence A(A,A) = Yo wy di(Ag, Ay).

*  Tj: max-entropy kernel (row-stochastic); Z;: partition function; § > 0: inverse temper-
ature.

e 0(i,j) € U(1): phase field; R(P): mean resultant; V(P) = 1 — R(P): variance-like
saturation.

®  P: coherence patch; C: complex of saturated patches; H: directed acyclic hypergraph
of patch formation.

3. Relational Space and the Structure of Informational Compatibility

The foundational entity in this framework is not a particle, spacetime point, or em-
bedded field, but an irreducible relational primitive (or coherence unit). What defines
them—and allows structure to eventually emerge—is a set of intrinsic labels. We denote the
space of all relational primitives by 7 , whose elements : € 7 constitute the non-reducible
objects of the theory (see, e.g., [28]). Each ¢ is ontologically fundamental: it has no internal
structure, spatial interpretation, or temporal evolution. It is simply a bare informational
unit—a point in the space of relational possibility, each carrying an internal label space that
defines how it may participate in coherent structures.

To each relational primitive 1 € 7, we associate an internal label A(¢) that encodes
its intrinsic relational structure. The labels do not represent positions, coordinates, or
dynamical variables in spacetime. Rather, they define the internal degrees of freedom
by which relational primitives can be relationally compared, akin to the role of quantum
reference frames in relational quantum mechanics [28,29].
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Table 1. Conceptual analogs for relational primitives. While similar in function to known constructs,
their role in this model is distinctly relational.

Analog Similarity Difference
Qubit Internal phase 0, irreducibility, =~ No Hilbert space, no unitarity,
oIS relational coherence no defined observable
Spin networks Discrete, combinatorial, Labels are relational and not
(LQG) labeled embedded in spacetime
Causal set Fundamental events, Causality is emergent from
. coherence, not postulated
elements assembled into a poset - -
axiomatically
Symbolic, rule based, Dynamics arise from
Wolfram tokens . . entropy—coherence balance,
adjacency-driven o .
not substitution logic
. . Nological framework, but
T Exist only via contextual - N
opos atoms similar ontological
structure . .
minimalism
We define the label function
AT L, (1)

which assigns to each relational primitive 1 € 7 a label A(1) € £. To make the internal
structure of the label space explicit, we write each label as a tuple:

A1) = (0, 02,...,0,), )

where each component ¢, € Dj takes values in a fixed domain Dy appropriate to the
informational context. The label space L is therefore a product space,

L=D1 XDy x---xDy, )

with each Dy furnishing a distinct informational dimension for comparison across prim-
itives. These domains may be discrete (e.g., Z;), continuous (e.g., R), or drawn from
combinatorial and topological structures.

This decomposition plays a critical operational role: it enables component-wise eval-
uation of relational divergence, ensuring that informational differences are meaningfully
and consistently assessed. The tuple A(1) thus defines the primitive’s relational profile—a
structured specification of its intrinsic features relative to others in the system.

No specific structure is imposed on the form of A, but typical components may include:
discrete class identifiers (e.g., representation sectors, symbolic types), algebraic invariants
(e.g., parity, charge, spin), and logical or topological indices (e.g., graph coloring, homotopy
class). The formulation is intended to be general at this stage, enabling the model to support
a broad range of physical and computational interpretations.

The divergence between two primitives (; and ¢ is defined as

AA, Az) = Y di(Cris U ), (4)
R

where each dj is a domain-appropriate measure of dissimilarity. For numeric or
algebraic components, d; may be the absolute difference |(;; — s ;|; for modular types,
a cyclic distance; and for symbolic or categorical components, a binary mismatch. The
total divergence is a scalar quantity that vanishes when all label components match and
increases with informational disparity. It is symmetric and non-negative, but does not
satisfy the triangle inequality—hence, J is not a metric, but a purely relational comparator.
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The divergence function J plays a central role as a coherence discriminator. Low diver-
gence indicates high compatibility and the potential to participate in a common coherent
patch; high divergence suggests incompatibility, which suppresses joint stabilization.

A central postulate of the framework is that coherence is not auxiliary—it defines exis-
tence. A relational primitive ¢ has no physical meaning in isolation. It becomes ontologically
viable only when it participates in a mutually coherent configuration of other primitives.
Structure emerges not from imposed geometry, but from the spontaneous coherence of
internally compatible informational elements.

The Suppression Kernel from Variety-Coherence Optimization

When considering how evolution might occur in this relational space, we follow
the simple observation that relational systems seek to have the maximize diversity of
possible coherent interactions (entropy), while preserving local compatibility (suppression
of incoherence).

We define a kernel T(A;, A;), which quantifies the potential for coherence between
informational states A; and A;. Specifically, we define the relational variety by the Shannon
entropy of the kernel weights:

Si[T] = =) T;;log Ty, ®)
j

where, T;; = T(A;, A;). We constrain the local coherence by

Y T bij = b, (6)
j

where &) € RT is a fixed scalar threshold that regulates the expected relational divergence.
The expectation constraint on divergence means that structure can only emerge when
relational coherence is preserved. Without this restriction, maximizing entropy would
favor fully delocalized distributions, thereby destroying any meaningful structural align-
ment. Fixing the expected divergence ensures that the system explores diversity within
a relationally meaningful band, preventing incoherent scattering. This mimics the same
structural role as a fixed energy budget in thermodynamic ensembles. Just as a thermal
system maximizes entropy under a fixed energy constraint—preventing it from heating into
incoherent noise—this framework maximizes relational entropy under a fixed divergence
constraint, preserving internal coherence across the informational structure.

ZQ:L (7)
]

,C[T} = — ZTi]' log Tl']' + }1(2 Tl‘]‘ - 1) — ﬁ(z Tij Aij — A) , (8)
] ] ]

where y and § > 0 are Lagrange multipliers and A is the target expected divergence.

oL
1
—BA;;
e PO _BA. d
T = 7 Z:;emh A:ﬁ?%a (10)
1

Oscale = B (11)
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The suppression kernel Tj; is well-defined if the partition function Z; converges for all
relational configurations A; € L. This convergence follows from two intrinsic properties of
the relational divergence function A(A;, A;). First, for any fixed configuration A;, the set of
configurations whose divergence from A; is less than a given threshold A, namely

{)\] el ‘ A(/\,‘,/\]') < A},

is finite in the discrete case, or effectively finite in practice in the continuous case due to
the rapid decay of the exponential suppression factor exp(—x A;;). Thus, although the
total label space £ may be infinite or continuous, the number of significantly coherent
configurations remains bounded in effect, ensuring that coherence remains concentrated
rather than delocalized.

Convergence.

For continuous or unbounded label spaces, convergence of Z; follows under a mild
growth condition on the volume of divergence balls: there exist constants C,a > 0 such
that

VOI{)\]‘ eL: A(/\i/ )\]) < 1’} < Ce™.

Then Z; < oo for all B > a. Absent such a bound, we regard convergence as holding under
appropriate regularity assumptions on the label-space measure.
In addition, the exponential decay

suppresses the contribution of highly divergent configurations so sharply that distant
relational states contribute negligibly to the partition function. Together, these two features
ensure that the sum (or integral) defining Z; converges for all A; € £, without the need for
any external cutoff or regularization. The coherence scale Jy thus functions as a natural,
intrinsic cutoff arising from the relational structure itself. This affirms a core principle of
the VCO framework: the universe tends to explore relational variety, but only to the extent
that local compatibility is maintained.

4. Coherence Patches and the Onset of Structure

To understand how structure emerges from a fundamentally background-free rela-
tional space, we consider what it means for a group of informational configurations to
exhibit internal consistency. To do this, we define a coherence patch as a subset of A in
which T(A;,A;) > 0. This condition ensures that no member of the patch is entirely incom-
patible with another. The patch is an emergent object: a minimal expression of internal
coherence provided by the suppression kernel within the otherwise unstructured relational
space.

These coherence patches grow through the inclusion of additional primitives, but their
internal alignment becomes increasingly difficult to sustain. The suppression kernel decays
exponentially with relational divergence, and large patches tend to accumulate internal
tension. To that end, we define a phase field as a mechanism that regulates and ultimately
limits the growth of patches.

We clarify that the phase field in our model is not a conventional dynamical field
defined over spacetime, but rather a relational construct defined over coherence-compatible
pairs of informational primitives. Specifically, it is a U(1)-valued function 6(s;, ;) that
encodes internal phase alignment within coherence patches. This relational phase structure
is defined over a non-spatiotemporal domain, which we term a relational phase space—a
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configuration space of pairwise informational agreement. More precisely, the phase field is
a function of the form:
6:1x1I— U()

where I denotes the set of irreducible relational primitives, and 6(i;, ;) assigns a phase
value in the unit circle group U(1) to each pair of primitives 4,1, € I. Upon reaching
a critical coherence threshold (6 = ), the accumulated phase structure is projected via
Fourier duality into emergent spatial geometry. The use of phase field and phase space in this
context is thus operational and structural, rather than geometric or canonical.

More specifically, for a given patch P, we define the mean pairwise phase deviation as

R@L:A$4Z e 0<R(P)<1, (12)
(ij)ep
1<]
where
M=#{(i,j)eP:i<j}

is the number of distinct pairs in the patch.
We define the phase dispersion as

V(P):=1-R(P), (13)

and say that a patch saturates when V(P) > V. for a fixed threshold V. € (0, 1].

which captures the average phase spread across the patch. This quantity plays a
central role in coherence dynamics: as more primitives are added, the patch becomes less
tightly aligned in relational phase space, and §(P) increases. Small, highly compatible
patches exhibit low phase deviation and can grow by incorporating additional elements
with similar relational characteristics. However, this growth is self-limiting.

Once the internal phase spread reaches a critical value, the structure can no longer
sustain coherence across all its members. As described above, a limit is reached beyond
which the coherence of a patch cannot be preserved. This defines a saturation point: a
transition where the patch can no longer grow without violating the mutual coherence that
enabled its formation. The mechanism governing this transition is rooted in the patch’s
internal phase structure. Once the dispersion V(P) = 1 — R(P) exceeds a fixed threshold
V., destructive interference overwhelms constructive alignment and the patch stabilizes
into an irreducible structure.

In this way, coherence patches mark the earliest emergence of form from pure infor-
mational compatibility. They are not externally imposed or statically defined, but rather
assemble dynamically through local accumulation of mutual coherence. Their growth is
regulated by the coherence field and the relational divergence, and they terminate naturally
when internal agreement can no longer be maintained. Saturation thus signals not failure,
but completion: the coherent configuration has reached the limit of its internal consistency.

5. Saturation and the Stabilization of Structure

As described in Sec. 4, coherence within a patch is quantified by the resultant R(P)
and its dispersion V(P) = 1 — R(P). As additional primitives are incorporated, alignment
decreases and dispersion grows. When V(P) exceeds a fixed threshold V¢, the patch can no
longer sustain global coherence and saturates into an irreducible unit.

This criticality is not imposed externally but follows from the compact nature of the
U(1) phase space: once dispersion becomes too large, destructive interference overwhelms
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constructive alignment. Saturation therefore marks the boundary between viable relational
growth and collapse. Coherence does not fade gradually—it halts abruptly when the
dispersion threshold is crossed. The resulting saturated unit cannot admit further elements
without breaking internal consistency.

6. The Relational Polytope

In recent developments across high-energy theory, positive geometries have emerged
as powerful tools for encoding physical constraints in a purely combinatorial and geometric
language [6-9]. These structures reveal that many aspects of quantum field theory and
cosmology can be captured through the intrinsic geometry of admissible configurations. In
a similar spirit, we introduce a relational polytope, Pr, to describe the coherent organization
of relational primitives—not in an ambient space, but as a combinatorial object encod-
ing adjacency, ancestry, and saturation relationships among irreducible patches. Unlike
conventional polytopes embedded in R”, the relational polytope arises from internal in-
formational constraints, and its faces represent saturated coherence patches rather than
spatial simplices. This approach provides a geometric scaffold for coherence propagation,
entanglement lineage, and emergent causal structure within a background-free framework.

The result is a combinatorial structure whose ‘faces’ are coherent patches and whose
adjacency structure is induced by shared ancestry and saturation rules. Each relational
face, or R-face, represents a coherence-saturated region, and R-faces are adjacent if they
share informational ancestry or mutually coherent boundaries. Because saturated patches
emerge through local, adjacency-preserving updates, and no patch may overlap or subsume
another, the collection of all patches defines a tiling of relational space.

As coherence propagates, new patches are seeded by existing faces, producing a
directed network of R-faces. This network forms the backbone of the polytope’s growth,
and encodes both causal order and relational structure. In later sections, this polytope will
serve as the domain from which geometry, tiling, and entanglement arise.

We represent a finite subset of such labeled states as a set of vertices V = {v;}, where
each v; corresponds to a relational primitive ¢;, and carries its label A; = A(y;). This
shift does not endow the elements with any new geometric status. The representation as
vertices is introduced solely to support the construction of coherent subsets whose internal
structure can be analyzed. That is, a patch P C V is coherent if for all v;, vj € P, we have
T(/\i, /\]) > 0.

The stabilized subset is what we identify as an R-face. It is not merely a coherent
patch—it is a structure that has crystallized, reaching the irreducible limit of relational
compatibility. Beyond this point, it can neither grow nor dissolve without violating the
coherence dynamics that brought it into existence. Its informational agreement is complete,
and its structure is defined.

To characterize an R-face more precisely, we now formalize the criteria that distinguish
such a structure. Let F C V be a finite subset of labeled vertices. Then F qualifies as a
relational face if it satisfies the following conditions, taken together and not in isolation.

First, all members of F must exhibit nonzero mutual coherence. The suppression
kernel T(A;, A;) must be finite and strictly positive for every pair of distinct elements in
F. This ensures that no configuration in the face is incoherent with any other. Second,
the face must exhibit a consistent internal relational structure, characterized by a well-
defined representative phase, a dominant or invariant symmetry class, and a coherent
set of conserved quantities. These attributes must be unambiguous and consistent across
the patch, ensuring compatibility with the mutual coherence condition. Third, the face
must be non-degenerate. Its internal structure must not be contradictory, and must not
admit multiple or ill-defined phase representatives, parity labels, or invariant components.
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Finally, the face must be irreducible: no proper subset of F may satisfy the same structural
criteria. The coherence and internal consistency of the face cannot be attributed to any
smaller grouping of its members.

An R-face, then, is a minimal, saturated unit of structure. It is the endpoint of relational
accumulation, and the seed of higher-order combinatorial form. In the sections that follow,
we will show how these saturated faces interconnect and propagate coherence forward
into the relational space. Their interrelation defines a new layer of emergent structure:
a directed architecture of stable coherence that encodes not only compatibility, but the
irreversible passage of time.

6.1. Coherence Propagation and the Emergence of the Directed Architecture

In the fully emergent formulation of the framework, no combinatorial structure is
assumed in advance. Each R-face arises through local coherence accumulation among
relationally labeled configurations. The propagation of coherence from one face to another
is likewise governed by internal relations alone. There is no global topology, no coordinate
system, and no external time parameter. Structure grows from coherence, one saturated
patch at a time.

After a patch P has crystallized into an R-face F;, each vertex v € F; defines a local
neighborhood in relational space, consisting of configurations that remain compatible
under the suppression kernel. We define the forward coherence neighborhood of v as

N(v) = {v' € V\ F|T(A(v),A(2)) >0
and ¢’ is not yet saturated } (14)

This neighborhood represents the set of relationally accessible configurations that
may participate in new coherence patches seeded from v. It is determined entirely by the
suppression kernel T, which is a function of the intrinsic labels alone.

New coherence patches are then dynamically assembled via the suppression kernel
‘testing” subsets of N(v) , along with the seeding vertex v, for mutual compatibility and
eventual saturation. If the accumulated relational phase among such a subset reaches the
critical value = 77, and if the patch satisfies irreducibility, a new R-face F; is formed. This
crystallization event is a direct descendant of the seed face F;, and we denote this relation
as a directed link F; — F;.

This process iterates locally. From every vertex in a saturated R-face, new neighbor-
hoods are scanned and new patches may form. Each successful saturation event extends the
structure outward, preserving local coherence but introducing global order. The resulting
architecture is a directed acyclic hypergraph (DAH), built from relational ancestry rather than
imposed connections. Each node corresponds to a saturated R-face and each directed edge
reflects a coherence propagation path through relational space. This ordering was strongly
motivated by results in causal set theory (CST), as introduced by Bombelli, Lee, Meyer,
and Sorkin [10], which modeled spacetime as a discrete partially ordered set where causal
structure is fundamental. In our framework, this similar causal architecture emerges from
the propagation of coherence through saturated patches. This process yields the DAH
structure akin to a causal set, but grounded in informational compatibility. As such, it
invites reinterpretation of results from CST and causal entropy bounds [13,20] in terms of
relational saturation and coherence dynamics.

The DAH encodes both the structure and the history of emergence. It is directed,
because saturation is irreversible: once coherence collapses, the structure is fixed. It is
acyclic, because no face can form from another without breaking the coherence hierarchy
established by prior saturation events. And it is hypergraphic, because each R-face may
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seed multiple subsequent faces, and each new face may draw coherence from more than sz
one ancestor. Crucially, a coherence history is fixed per R-face, but the primitive might still  se
participate in new, orthogonal coherence contexts. 387

This relational growth mechanism defines a unique kind of locality, where each R-face s
arises only through coherence inherited from an existing face. No face can crystallize s
spontaneously or at random and coherence must be transmitted through compatible kernel 300
values from previously saturated configurations. This guarantees that all growth proceeds a
from existing structure, and that the relational space expands in a coherence-preserving, s
causally ordered sequence. 303

In this way, the DAH provides not only the structural skeleton of the emergent system, 30
but also a holds the ‘memory’ of its temporal unfolding. Causal direction, irreversibility, s
and relational locality all emerge naturally from the propagation rules encoded in the 30
suppression kernel and the saturation condition. The model constructs its own dynamical s
history—without invoking a background time, metric, or spacetime manifold. 308

7. Geometry from Phase: Spectral Projection and Spatial Tiling 300

At this stage, no geometric content has yet been invoked and the structure remains 40
entirely relational. However, a critical transition occurs once an R-face saturates. Prior to  a
saturation, the coherence field 6(1;, 1) € [0,27r) governs the internal alignment of the patch, 4
acting as a dynamical register of relational compatibility. These phase values accumulate 403
over paths of coherence propagation, and their spread determines the stability of the 4

structure. a0
When the average pairwise phase deviation reaches the critical value 406
1 i
R(P):=|5: ¥ el e0,1, M=#{(i,j)eP:i<j}, (15)
(ij)eP
i<j

we define 407

V(P):=1-R(P), (16)

and declare saturation when V(P) > V, for a fixed V. € (0,1]. At this point, coherence s
collapses. As established in Section 5, this is not merely a numerical threshold but an
analytic boundary encoded in Euler’s identity, ¢/ 4+ 1 = 0. Beyond this point, destructive s
interference dominates, and no further elements can be added without destabilizing the s
configuration. At this juncture, a saturated R-face has reached a condition of internal
irreducibility: its growth halts, and its coherence becomes structurally fixed. a3

To continue representation beyond this coherence collapse, the model undergoes a s
transformation—a Fourier projection. The internal relational structure of a saturated patch is s

captured by a phase coherence distribution 416
(Pp(@) = Z (5(9—9([1‘,[]')), (17)
li,leP

which encodes the aggregate interference structure over the patch. This distribution is  «v

compactly supported on [0,277) and reflects the full phase content of the R-face. a1
We define the emergent spatial wavefunction via Fourier transform: 419
1 o2r —imf 1 —imb(i ]
D = — = — '])
¢p(m) 27r/o op(0)e "™ do 5 Y e , mEez, (18)

(i,j)epP
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where x € R is interpreted as an emergent spatial coordinate. This map reinterprets
phase interference as spatial localization: what had previously been oscillatory coherence
in relational phase space becomes separation in emergent space. The transformation is
not imposed, but necessitated by the collapse of coherence. Saturation demands a new
representation. Geometry arises as the dual image of coherence. In this way, space is
necessary to accommodate increasing variety.

This duality also imposes a relational uncertainty principle. Since the phase coherence
distribution ¢p(6) is compactly supported on [0, 27), its Fourier transform p(x) must
obey the standard uncertainty relation:

AG-Ax > %, (19)
where A0 characterizes the width of coherence in phase space and Ax its spatial localization.
At the saturation boundary 6 = 7, phase uncertainty reaches its maximal allowable spread,
and yp(x) becomes correspondingly localized. This lower bound defines the smallest
resolvable spatial tile, linking the Planck scale to the collapse of coherence.

This projection acts on a coherence field prior to geometry. It preserves background
independence and inherits its structure entirely from internal phase dynamics. Saturated
R-faces thus tile emergent space not by physical embedding, but by spectral distinction.
Adjacency in this space corresponds to overlap in phase ancestry: if two R-faces share a
coherence lineage, their spatial wavefunctions p(x) exhibit correlated localization.

This structure defines a relational tiling: each R-face corresponds to a discrete spatial tile,
and their connectivity reflects coherence ancestry through the directed acyclic hypergraph.
Even when multiple faces crystallize from a shared boundary, their spatial identities are
inherited from phase structure and remain entangled through spectral adjacency. Geometry
arises from coherence propagation rather than distance.

The emergent space defined by this process is discrete, spectral, and causally scaffolded.
The Fourier transform acts as the boundary map between pre-geometric coherence and
post-saturation structure. The DAH becomes a geometric scaffold: a tiling of saturated,
relationally locked structures, joined by their shared causal and informational past. In
this framework, what appears as spatial adjacency is the spectral shadow of relational
coherence.

7.1. Justification of the Fourier Projection

The analytic transition from relational phase to emergent spatial structure is governed
by spectral projection. When a coherence patch saturates at § = 7, its internal dynamics
cease to evolve. The accumulated interference has reached a fixed point, and no further
growth is possible within the phase representation. At this stage, the Fourier transform
emerges as the unique and necessary continuation'. This necessity is grounded in three
key features of the model:

(i) Collapse at Criticality: At @ = 7, the coherence field becomes maximally disordered.
The phase contributions across the patch destructively interfere, and the suppression kernel
degenerates. This collapse is not numerical but structural: the relational representation
no longer supports further differentiation. The Fourier transform resolves this by re-
representing the saturated configuration as a localized amplitude distribution in a conjugate

! We emphasize that the Fourier projection is not claimed to be the only possible route to emergent spatial

structure in this framework. It is, however, the natural linear continuation of the phase coherence field given
the U(1) structure and the translation-invariant suppression kernel. Other embedding schemes, such as those
based on correlation functions (see [43]) or nonlinear mappings of relational ancestry, could also be explored.
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domain. The interference kernel ¢p(6) is mapped to Pp(x), which defines a projective
geometry free of phase singularities.

(ii) Spectral Irreducibility: Saturated patches cannot be refined by further phase anal-
ysis. The only remaining operation is spectral decomposition. The Fourier transform is
the unique linear map that (a) preserves total informational content, (b) projects from a
compact domain to an extended one, and (c) diagonalizes translation-invariant convolution
operators such as the suppression kernel. No other continuation satisfies these constraints
while preserving background independence and informational closure.

(iii) Structural Continuity: The coherence kernel prior to saturation is governed by
phase-based suppression: T(0;,0;) ~ e~ 19=6il/% - After saturation, the spatial coherence
kernel becomes its spectral dual.

T(m) = %

Translation-invariant kernels T(Af) on U(1) are diagonal in the Fourier series basis

/O 7 r(A0) e 0 4(Ap) (20)

with eigenvalues given by Eq. (20). This expression is not imposed; it is inherited. The
coherence decay scale A;j = dgcqle remains unchanged, reflecting the critical bandwidth
of the saturated phase distribution. The Fourier transform transmits this structure into
geometry without introducing new parameters.

Proposition (Uniqueness of Fourier-like Emergence).

Let ¢(0) be a real-valued coherence distribution defined on the compact phase space
6 € [0,27), with structure defined by modular interference. Any linear, invertible, and
information-preserving map ¢ — 1 into a non-compact space x € R that diagonalizes
translation-invariant relational kernels must be (up to unitary equivalence) the Fourier
transform.

Proof sketch.
Let ¢(0) € L%([0,27)), with inner product:

(¢, ¢') = /()2n4>(9)¢'(9) d9.

We assume a linear map F : L2([0,27)) — L?(R) that satisfies:

L Unitarity: (¢, ¢') = (Flg], FI¢'),

2. Translation compatibility: convolution with a phase-invariant kernel T (6; — ;) maps to
multiplication in the dual space: F[T * ¢] = T(x) - (),

3. Minimal spectral support: compact phase corresponds to unbounded localization (dual
decay).

These are exactly the defining properties of the Fourier transform as the unitary operator
that diagonalizes circulant kernels on U(1). By the spectral theorem, no other linear
transform on L?([0,277)) preserves these properties and maps into an extended domain R
while retaining inner product structure.

Therefore, the Fourier transform is the unique (modulo basis choice) structure-
preserving continuation of compact phase dynamics into non-compact geometric localiza-
tion. O

Thus, the Fourier projection is not an optional maneuver. It is the canonical map
that preserves internal relational symmetry, resolves phase degeneracy, and reveals the
latent spatial structure encoded in coherence. It does not assume geometry—it derives it.
This transition from interference to localization defines the boundary between relational
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dynamics and spatial representation, and marks the moment when informational agreement
becomes geometric form?.

7.2. Geometric Signature from Phase

The projection of saturated relational coherence into geometry produces two distinct
structural layers: spatial tiling and causal order. This projection is a Fourier dualization of
coherence information—transforming internal interference into external localization. Once
a coherence patch saturates, the accumulated phase structure becomes analytically closed
and must be re-expressed in its conjugate representation. The Fourier transform performs
this task, translating relational alignment into spatial localization and coherence ancestry
into temporal structure.

Euclidean spatial tiling.

The internal phase distribution ¢p(6) of a saturated R-face defines its coherence
structure. Its Fourier dual p(x) localizes this structure in an emergent spatial coordinate
x € R, giving rise to a discrete Euclidean geometry. Since phase spread is bounded by
6 < 7, the associated spatial support is finite. The suppression kernel becomes a real
exponential (Eqn. 20, inducing spatial adjacency and forming a tiling in the dual space.
This tiling is not metric-imposed but coherence-derived: spatial separation encodes the
degree of spectral orthogonality between saturated patches.

Lorentzian causal order.

The directed acyclic hypergraph (DAH) defines a relational ancestry structure between
R-faces. Let F denote the set of all saturated R-faces. Define a binary relation < such
that F; < F; if F; was seeded by one or more coherence-preserving vertices from F;. This
relation is asymmetric, transitive, and irreflexive, forming a partial order. The DAH
therefore defines a causal structure not through spacetime metrics, but through coherence
propagation. Temporal separation is defined by path length in the DAH:

Atij oclength(F; — F), Axjj < cAt (21)

ijs
where a finite constant ¢ > 0 plays the role of a maximal coherence propagation speed.

Resolution: Layered Emergence.

There is no conflict between spatial tiling and temporal order. The coherence projection
yields a layered structure:
Pr — R, x (F, =), (22)

where Py, is the relational polytope of coherence-saturated R-faces, and the right-hand side
expresses its two emergent facets:

. ]R%u o a spatial domain formed by the Fourier duals ip(x) of saturated phase distri-
butions,

e (F,=):acausal order over saturated patches, defined by coherence ancestry in the
DAH.

This projection reveals that what appears as spatial adjacency is in fact spectral prox-
imity, and what appears as temporal succession is the record of stabilization. The poset
(F, <) encodes an irreversible informational topology: each R-face is fixed by a past co-

2 We note that while the present treatment focuses on the U(1) phase structure, a natural extension involves
considering higher symmetry groups such as SU(2), particularly if relational primitives possess spin-like or
multi-component degrees of freedom. We defer exploration of SU(2)-based Fourier duality and its implications
for emergent geometry to future work.
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Table 2. Emergent spacetime layers

Component Origin Signature
Spatial coordinates = Fourier projection of phase Euclidean
Temporal order DAH edge direction F; < F; Lorentzian

Lightcone structure a finite constant ¢ > 0 constraint Causal

herence event, and coherence can only propagate outward. Time, in this model, is not a
dimension—it is the structure of relational ancestry.

Three consequences follow. First, the projection from relational phase into geometry
is not an imposed analytic continuation but a spectral emergence map. Second, causal
structure arises independently through coherence ancestry and path dependence in the
DAH, avoiding any tension with Euclidean tiling. Third, the coherence threshold § = 7
acts as an entropic bound, matching holographic scaling relations [2] without invoking
Lorentzian metric structure.

In this way, the apparent dichotomy between space and time is dissolved. Both emerge
from coherence, but in different modalities: space through spectral decomposition, time
through irreversible ancestry. The DAH becomes a scaffold for both: tiling space through
coherence duals, and ordering time through stabilization memory. Spacetime, in this model,
is not a manifold—it is the layered record of relational saturation.

Figure 2 schematically illustrates the sequential emergence of spacetime from
background-independent informational primitives: initially unstructured relational el-
ements become linked by mutual compatibility, forming a coherence kernel that organizes
into saturated coherence patches. When internal phase deviations reach the critical thresh-
old 0 = 7, these patches crystallize into irreducible units (R-faces). The projection of their
internal relational phase structure via Fourier transform then yields emergent spatial local-
ization and geometry, with spectral proximity encoding adjacency and relational ancestry
defining causal order.

()
o O um 0

® 0 o
—b — @ . —— B

|4 1
o 0 ! ) Fourier ..
o C /,’ Projection ..

Figure 2. Schematic representation of the emergence of spacetime from informational coherence.
The process begins with relational primitives—irreducible label-bearing elements in a background-
independent substrate. Relational compatibility among these elements leads to the formation of a
coherence kernel, illustrated as a connectivity graph. As coherent interactions accumulate, coherence
patches form and grow until they reach a critical phase deviation, after which they saturate. The
final stage involves a spectral projection (via Fourier transform), from which spacetime geometry is
seen to emerge.

8. Shared Features with Quantum Gravity Paradigms

The framework presented in this paper offers a novel approach to quantum gravity,
grounded in informational coherence and relational saturation. This perspective resonates
with broader efforts to reconstruct spacetime from non-geometric principles. A closely
related formal precedent is the AdS/CFT correspondence [1,19], wherein gravitational
geometry in anti-de Sitter space emerges from a lower-dimensional conformal field theory.
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In that context, bulk geometry is encoded in patterns of entanglement across the boundary,
with the Ryu-Takayanagi formula relating entanglement entropy to minimal surfaces in
the bulk [2,12]. The present framework draws from this spirit, though it proceeds without
invoking conformal symmetry or a prescribed holographic duality. Here, the effective
boundary arises from the causal ancestry structure within the relational polytope, and
overlapping paths in the adjacency graph fulfill the role of minimal surfaces. Entanglement
arises from shared relational origin rather than computation within a dual field theory.

This conceptual alignment extends further. The exponential decay of the suppression
kernel, T ~ ¢~%/%  ensures that coherent correlations remain intrinsically localized. This
behavior reflects the holographic principle’s assertion that physical information is encoded
on boundaries. The saturation threshold at § = 7 further enforces localization by trun-
cating long-range phase coherence. This parallels how tensor networks realize area-law
entanglement scaling through limited entanglement propagation [4,16]. In addition, the
irreversible crystallization of R-faces functions analogously to a decoding process: unstable
phase fluctuations, conceptualized as errors, transform into stable spatial tiles representing
logical states. The directed acyclic hypergraph (DAH) records a fault-tolerant history, with
each saturation event projecting noisy relational data into geometrically robust structures.
These connections suggest that the model intrinsically incorporates non-local redundancy
and entropy scaling, features central to both AdS/CFT and quantum computing-inspired
approaches to quantum gravity.

Causal set theory (CST) provides another relevant precedent. In the foundational
work of Bombelli, Lee, Meyer, and Sorkin [10], spacetime is modeled as a discrete partially
ordered set, with causal structure captured by the order relation. In the present framework,
causal order arises dynamically through the directed architecture of saturated coherence
patches, which naturally form a causal set generated through coherence propagation. This
opens avenues for reinterpreting results from causal set cosmology and entropy bounds
[13,20] in terms of relational saturation and coherence dynamics, potentially yielding new
insights into constraints on causal patch growth.

Loop quantum gravity (LQG) and spin foam models similarly regard spacetime as a
combinatorial structure built from quantum excitations [14,15]. The emphasis on discrete
area elements and fundamental quanta of geometry resonates with the interpretation
of saturated R-faces in this framework. Here, discreteness arises from relational phase
coherence and informational thresholds, providing an emergent origin for quantization
rather than one rooted in Hilbert space structures or operator dynamics.

Recent models developed by Wolfram and collaborators [18,21] propose that space
and time emerge from the evolution of hypergraphs governed by local rewriting rules.
These approaches share a focus on causal structure and discrete evolution with the present
model. However, here the dynamics are governed by internal compatibility and coherence
propagation. The DAH arises through relational criticality, without reliance on externally
imposed update procedures.

Finally, the study of combinatorial and geometric structures in scattering amplitudes,
particularly through the amplituhedron and positive geometries [6,7,9], has demonstrated
the power of emergent structures in encoding physical laws. Though developed in a
distinct context, this work exemplifies a broader principle echoed here: the emergence
of geometric form from deeper combinatorial and relational structure. In this light, the
relational polytope introduced in this framework may offer an analogous object, a geometry
projected from relational coherence rather than embedded within spacetime.
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9. Conclusions

This work presents a relational, information-theoretic framework in which spacetime
emerges from the interplay of informational diversity and coherence. The central organizing
principle, Variety—Coherence Optimization, balances local variation with global compatibility
and serves as a structural foundation that cuts across multiple approaches to quantum
gravity.

We have shown how coherent relational configurations stabilize into irreducible units,
termed R-faces, once a critical phase threshold is reached. These structures propagate
coherence through a directed acyclic hypergraph (DAH), generating an emergent causal
order grounded in relational ancestry. A Fourier duality then maps the saturated phase
structure into discrete spatial geometry, producing a tiling that encodes adjacency through
coherence lineage.

This paper should be understood as a conceptual and operational proof of concept for
emergent spacetime, rather than a fully realized physical model. Extending this framework
to incorporate matter, recover known gravitational dynamics, and connect more directly to
observational phenomena remains an open and promising direction for future work.
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