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We present a reflection–positive Euclidean field theory whose analytic continuation yields a
Lorentzian quantum field theory on a Friedmann–Robertson–Walker background. A Euclidean cap
of finite temporal extent on Rτ × R3 reproduces the Hartle–Hawking (HH) “no–boundary” state
as a special case, with reflection positivity and analytic continuation ensuring identical Lorentzian
dynamics. More generally, the framework applies to any reflection–positive Euclidean domain that
admits analytic continuation to a unitary Lorentzian theory, providing a uniform reformulation of
boundary–based cosmologies. In this view, the Euclidean phase is stationary and pre–geometric,
with exponentially suppressed spatial correlations; ordinary space and Lorentzian causality emerge
through analytic continuation. The same vacuum state, renormalization structure, and semiclassical
dynamics are preserved, so all observable predictions coincide with standard cosmology. Conceptu-
ally, the framework illustrates interpretive underdetermination: formally equivalent constructions
yield the same empirical content while embodying different ontological commitments. Here, time
remains fundamental through the analytic transition, and spatial geometry arises derivatively, clar-
ifying the assumptions underlying cosmological boundary conditions.

Keywords: Euclidean quantum field theory; analytic continuation; reflection positivity; interpre-
tive underdetermination; spacetime ontology; foundations of cosmology

I. INTRODUCTION

Foundational models of the universe’s origin
often employ a Euclidean path–integral con-
struction—exemplified by the Hartle–Hawking
“no–boundary” proposal [9]—as a canonical frame-
work for defining the cosmological wave functional. At
the same time, contemporary approaches to quantum
gravity increasingly regard spacetime as an emergent
construct arising from relational or combinatorial degrees
of freedom [1, 3, 5, 10, 11, 14, 15, 17, 18]. Motivated by
these developments, we consider a reformulation that
is empirically equivalent to the standard no–boundary
framework but ontologically distinct: in place of a
symmetric spacetime manifold, we take the Euclidean
sector to encode a finite–volume temporal domain from
which ordinary space emerges upon analytic continua-
tion. Thus, in this reinterpretation, Hawking’s question
“What is north of the North Pole?” finds its temporal
analogue: “Where is the end of east?”

Our aim is not to introduce new geometric structure,
but to clarify that what is taken as fundamental—a
fully symmetric spacetime or a temporally dominated
Euclidean phase—is a matter of interpretive convention
rather than empirical necessity. We work within an ordi-
nary reflection–positive Euclidean quantum field theory,
defined on a warped background

ds2E = dτ2 + e2σ(τ)dx2, (1)

where σ(τ) → −∞ as τ → −∞ and σ′(0) = 0. These
conditions ensure that the Euclidean action is finite per
unit comoving volume: the integral∫ 0

−∞
e3σ(τ) dτ < ∞, (2)

yielding a finite but topologically non-compact “Eu-
clidean cap.” Analytically continuing τ 7→ it defines the
Lorentzian metric

ds2L = −dt2 + a2(t) dx2, a(t) = eσ(it), (3)

where σ is assumed analytic in a neighborhood of the real
axis and even under reflection. Under these conditions
the construction satisfies the Osterwalder–Schrader ax-
ioms [12, 13] in the standard sense—reflection positivity
and locality—so that the analytically continued theory
yields a unitary, causal quantum field theory on the cor-
responding FRW background. All Lorentzian correlation
functions therefore coincide with those of ordinary QFT
on the same a(t).
Empirically, this “finite-cap” cosmology is indistin-

guishable from the Hartle–Hawking framework: the same
vacuum state, renormalization structure, and semiclas-
sical dynamics obtain. Conceptually, however, the Eu-
clidean region is reinterpreted. Instead of representing
a spacetime “fluctuation into being,” it is treated as
a stationary, temporally extended pre-geometric phase
in which spatial correlations are exponentially sup-
pressed. Ordinary space—and with it, Lorentzian causal-
ity—emerges through analytic continuation.
We note that critiques of the Hartle–Hawking proposal

address specific contour choices in minisuperspace that
can generate runaway modes or non–convergent path in-
tegrals [6, 7]. In the present formulation these patholo-
gies do not arise, since the Euclidean segment enters only
as a reflection–positive domain whose analytic continua-
tion yields the same Lorentzian wave functional obtained
in the standard approach. The finite Euclidean–time
(FET) construction therefore retains the stability and
boundary regularity of the Hartle–Hawking state while
shifting only its ontological interpretation—time is prim-
itive; space is derivative. The following sections develop
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the mathematical framework, establish empirical equiv-
alence, and discuss the implications for quantum gravity
and the ontology of spacetime.

II. MATHEMATICAL FRAMEWORK

Although the Euclidean–Lorentzian correspondence
suggests that a temporal compactification should repro-
duce the same dynamics, this equivalence is not auto-
matic: reflection positivity, boundary smoothness, and
analytic continuation of the scale factor must all be
checked explicitly. Showing that these conditions hold
demonstrates that the Hartle–Hawking framework is an-
alytically complete under reversal of the Euclidean con-
tour.

We formulate the finite Euclidean–time (FET) cos-
mology entirely within standard Euclidean quantum
field theory. The Euclidean manifold of (1) car-
ries a positive–definite Riemannian metric of signature
(+,+,+,+). Unlike the original Hartle–Hawking con-
struction, in which the full four–geometry is compact,
the present model renders only the Euclidean temporal
direction effectively finite through an exponential warp
factor. Spatial slices remain topologically R3 but con-
tract exponentially as τ→−∞, where eσ(τ)→0. Conse-
quently, the Euclidean region is finite in proper time yet
infinite in spatial extent, and the warp factor dynamically
suppresses spatial correlations.

The analytic continuation

τ 7→ it, e2σ(τ) 7→ a2(t) = e2σ(it), (4)

transforms the metric to Lorentzian signa-
ture (−,+,+,+), corresponding to a Fried-
mann–Robertson–Walker universe with scale factor
a(t). The pre–Lorentzian, or finite–Euclidean–time,
phase is therefore Riemannian in form but temporally
interpreted: a one–dimensional Euclidean domain en-
dowed with exponentially suppressed spatial fibers, not
a compact four–manifold.

The technical structure of the framework proceeds as
follows: §IIA establishes the geometric background, §II B
formulates the Euclidean field theory, §II C derives the
universal wave functional, and §IID verifies reflection
positivity and analytic continuation.

A. Geometry of the Euclidean finite–time model

We consider the Euclidean four–manifold

ME
∼= Rτ × R3

x, (5)

equipped with the warped product metric introduced in
Eq. (1) of Section I:

ds2E = dτ2 + e2σ(τ)dx2, (6)

where the scale function σ(τ) satisfies

lim
τ→−∞

σ(τ) = −∞,

σ′(0) = 0,

σ(τ) is nondecreasing for τ > 0.

(7)

The region τ < 0 defines a Euclidean “cap” of finite
four–volume,

Vol(M−
E ) =

∫ 0

−∞
dτ e3σ(τ) < ∞, (8)

ensuring that all Euclidean functional integrals are well
defined. The slice τ = 0 serves as the equator, character-
ized by vanishing extrinsic curvature K|τ=0 = 3σ′(0) =
0. For τ > 0, the warp factor eσ(τ) increases smoothly,
so that spatial separations acquire finite extent and or-
dinary geometrical structure emerges continuously.

B. Euclidean field theory

For definiteness, consider a real scalar field ϕ with local
polynomial potential V (ϕ) on (ME , gE), governed by the
Euclidean action

SE [ϕ;σ] =

∫
dτ d3x e3σ(τ)

×
[
1
2 (∂τϕ)

2 + 1
2e

−2σ(τ)|∇ϕ|2 + V (ϕ)
]
.

(9)

The generating functional for Euclidean correlation
functions is

Z[J ] =

∫
Dϕ exp

(
− SE [ϕ;σ] +

∫
dτ d3xJ(τ,x)ϕ(τ,x)

)
.

(10)
Locality and polynomial boundedness of V (ϕ) ensure

that Z[J ] defines a reflection–positive Schwinger func-
tional in the sense of Osterwalder and Schrader [12, 13].
In the cap region (τ < 0), the exponential suppression
eσ(τ)→0 effectively eliminates spatial gradients, so that
Eq. (9) factorizes into independent one–dimensional path
integrals for each comoving spatial label x. Spatial cor-
relators therefore decay exponentially for τ < 0, realizing
the “no–space” pre–geometric regime introduced in Sec-
tion I.

C. Universal wave functional at the equator

The wave functional on the equatorial slice τ = 0 is
obtained from the Euclidean path integral with boundary
value ϕ(0,x) = φ(x):

Ψ[φ] =

∫
ϕ|τ=0=φ

Dϕ e−SE [ϕ;σ]. (11)

For τ < 0, the suppression of spatial gradients implies
that Ψ[φ] factorizes over x into quasi–Gaussian ground



3

states of the one–dimensional dynamics along τ . For-
mally,

Ψ[φ] ∝ exp

(
− 1

2

∫
d3k

(2π)3
ωeff
k |φ̃k|2

)
, (12)

where ωeff
k is determined by the cap propagator associ-

ated with (9). This Ψ serves as the universal “vacuum”
state for the subsequent Lorentzian evolution.

D. Reflection positivity and analytic continuation

Define the reflection operator Θ : τ 7→−τ , (Θϕ)(τ,x) =
ϕ(−τ,x). Because σ(τ) is even and σ′(0) = 0, the Eu-
clidean action (9) satisfies SE [Θϕ;σ] = SE [ϕ;σ]. For
any functional F [ϕ] supported in τ > 0, the Oster-
walder–Schrader inner product

⟨F,ΘF ⟩OS =

∫
DϕF [Θϕ]F [ϕ] e−SE [ϕ;σ] ≥ 0 (13)

holds under the standard assumptions of reflection pos-
itivity and integrability. The OS reconstruction theo-
rem then provides a Hilbert space, vacuum vector, and
field operators satisfying the Wightman axioms on the
Lorentzian continuation,

ds2L = −dt2 + a2(t)dx2, a(t) = eσ(it), (14)

where σ is assumed analytic in a neighborhood of the
real axis. Time–ordered correlation functions obtained
from (14) coincide with those of standard quantum field
theory on the same FRW background, confirming empir-
ical equivalence.

The mathematical results of this section demonstrate
that the finite Euclidean–time cosmology constitutes a
consistent Euclidean field theory obeying the same ax-
ioms as ordinary QFT, while introducing a distinct tem-
poral ontology that will be examined further in Sec-
tions III and IV.

III. EMPIRICAL EQUIVALENCE AND
INDISTINGUISHABILITY

Having established the internal consistency of the
Euclidean construction in Section II, we now show
that all Lorentzian observables derived from the fi-
nite Euclidean–time (FET) model coincide with those
of conventional quantum field theory on a Fried-
mann–Robertson–Walker (FRW) background. This sec-
tion analyses the free theory (§IIIA), interacting renor-
malized theory (§III B), and semiclassical gravitational
coupling (§III C).

A. Free-field correspondence

For V (ϕ) = 1
2m

2ϕ2, the Fourier transform ϕ(τ,x) =∫
d3k (2π)−3ϕk(τ)e

ik·x reduces the Euclidean action (9)

to independent modes,

SE [ϕk] =
1
2

∫
dτ e3σ(τ)

[
(∂τϕk)(∂τϕ−k)

+
(
m2 + e−2σ(τ)k2

)
ϕkϕ−k

]
.

(15)

Each mode ϕk(τ) satisfies the one–dimensional Eu-
clidean equation of motion,

∂2
τϕk + 3σ′(τ)∂τϕk −

[
m2 + e−2σ(τ)k2

]
ϕk = 0. (16)

The regular solution that decays for τ→−∞ determines
the Gaussian width ωeff

k in Eq. (12). Under the analytic
continuation τ 7→ it, the equation becomes

ϕ̈k + 3
ȧ

a
ϕ̇k +

(
k2

a2
+m2

)
ϕk = 0, (17)

which is precisely the mode equation for a standard scalar
field on the FRW metric (14). By choosing the Euclidean
cap profile σ(τ) such that ωeff

k = ωBD
k (the Bunch–Davies

frequency), the equatorial wave functional (12) repro-
duces the conventional vacuum two–point function,

⟨0|ϕ(t,x)ϕ(t′,y)|0⟩ =
∫

d3k

(2π)3
eik·(x−y)

2ωBD
k

e−iωBD
k |t−t′|.

(18)
All free–field observables and power spectra therefore co-
incide with those of standard cosmology under the same
analytic continuation.

B. Interacting and renormalized theory

Local interactions and renormalization proceed iden-
tically because the Osterwalder–Schrader axioms remain
valid. Counterterms in perturbation theory are integrals
of local curvature and field polynomials, independent of
global geometric properties. Explicitly,

δSE =

∫
√
gE

(
δΛ+δξREϕ

2+δm2ϕ2+δλϕ4+· · ·
)
, (19)

where RE is the scalar curvature of gE in Eq. (6). Since
the curvature invariants are bounded [cf. Eq. (7)], the di-
vergences and renormalization group flow coincide with
those of ordinary Euclidean field theory on a smooth
background. Upon analytic continuation, the same coun-
terterms yield the Lorentzian effective action and stress
tensor. Thus, the finite Euclidean–time geometry neither
modifies nor obstructs the standard renormalized QFT
structure.

C. Semiclassical gravity and bounded curvature

Coupling the renormalized stress tensor to gravity
gives the semiclassical Einstein equations,

Gµν + Λgµν = 8πG ⟨Tµν⟩Ψ, (20)
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where the expectation value is taken in the state Ψ[φ]
defined by Eq. (11). In the Lorentzian regime, ⟨Tµν⟩Ψ
matches the standard vacuum expectation value in the
background (14). In the Euclidean cap,

√
gE ∼ e3σ(τ)

ensures that all curvature integrals remain finite even as
σ(τ)→−∞:

|RE | < C1 + C2e
−2σmin ,

∫ 0

−∞
|RE |

√
gE dτd3x < ∞.

(21)
Hence the finite Euclidean–time geometry is geodesically
complete and nonsingular, with the usual FRW dynamics
recovered for t > 0.

D. Summary of empirical equivalence

To summarize, Eqs. (18)–(21) show that:

(i) The reconstructed Lorentzian theory satisfies the
same field equations and two–point functions as
standard QFT.

(ii) Interacting and renormalized dynamics are unaf-
fected by the finite Euclidean–time cap.

(iii) Gravitational backreaction and curvature remain
finite and reproduce the standard semiclassical
limit.

All measurable predictions of the finite Euclidean–time
universe therefore coincide with those of conventional
cosmology. Any distinction between the two resides
solely in their ontological interpretation, a theme ex-
plored in Section IV.

IV. QUANTUM GRAVITY COMPATIBILITY

Section III established that the finite Euclidean–time
(FET) model reproduces all empirical predictions of stan-
dard quantum field theory and semiclassical gravity. We
now show that the same structure naturally accommo-
dates a quantum–gravitational interpretation. Three
complementary formulations are considered: the Eu-
clidean gravitational path integral (§IVA), the canoni-
cal Wheeler–DeWitt framework (§IVB), and discrete or
renormalization–group approaches (§IVC).

A. Euclidean gravitational path integral

Promoting the warp function σ(τ) of Eq. (6) to a
dynamical metric variable yields the gravitational Eu-
clidean action

SE [gE , ϕ] = − 1

16πG

∫
RE

√
gE d4x+ SE [ϕ;σ], (22)

where SE [ϕ;σ] is the matter action from Eq. (9). The
full partition function integrates over smooth, regular Eu-
clidean geometries,

Z =

∫
regular

DgE Dϕ e−SE [gE ,ϕ]. (23)

Boundary conditions are specified by the induced
three–metric hij and field configuration φ on the equator
τ = 0. The corresponding wave functional,

Ψ[hij , φ] =

∫
gE |τ=0=h
ϕ|τ=0=φ

DgE Dϕ e−SE [gE ,ϕ], (24)

is mathematically identical to the Hartle–Hawking
no–boundary state [8, 9], except that the Euclidean man-
ifold now possesses a finite Euclidean temporal domain
rather than a compact four–geometry [cf. Eq. (8)]. The
suppression eσ(τ)→0 regularizes both infrared and ultra-
violet regions of the gravitational path integral, provid-
ing a natural geometric cutoff without additional fields
or parameters.
The saddle point of (23) satisfies the Euclidean Ein-

stein equations,

Rµν − 1
2gµνR+ Λgµν = 8πGT (E)

µν , (25)

whose regular solution corresponds to the finite Eu-
clidean–time geometry of Eqs. (6)–(7). Analytic con-
tinuation of this saddle reproduces the Lorentzian FRW
universe of Eq. (14).

B. Canonical Wheeler–DeWitt picture

In the minisuperspace reduction, the metric ds2E =

dτ2 + a2(τ)dx2 with a(τ) = eσ(τ) yields the
one–dimensional gravitational action

SE [a] =
3π

4G

∫
dτ

[
a(a′)2 − a+ Λ

3 a
3
]
. (26)

Quantization leads to the Wheeler–DeWitt equation,[
− ℏ2

2M2
P

d2

da2
+ U(a)

]
Ψ(a) = 0, (27)

where MP = (3π/2G)1/2 and

U(a) =
3π

4G

(
a2 − Λ

3 a
4 − 8πG

3
a4ρ(a)

)
(28)

is the effective potential including the matter energy
density ρ(a). The Euclidean region of the finite Eu-
clidean–time sector corresponds to U(a)> 0 (classically
forbidden), producing the exponentially suppressed wave
functional

Ψ(a) ∝ exp

[
−
∫ a√

2M2
PU(a′) da′

]
, (29)
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while the Lorentzian region U(a) < 0 yields oscillatory
solutions. Equation (29) is precisely the WKB limit of
the Euclidean cap integral (24), providing a canonical
realization of the finite Euclidean–time geometry within
quantum cosmology.

C. Discrete and renormalization–group
perspectives

The finite Euclidean–time structure is compatible with
discrete quantum gravity approaches. In spin–foam
or loop–quantum–gravity formulations, the equatorial
three–surface corresponds to a boundary spin network,
and the Euclidean cap in Eq. (23) is represented by a fi-
nite four–complex (foam) whose amplitude A[boundary]
generates the same wave functional as Eq. (24). Reflec-
tion positivity of the continuum theory [Eq. (13)] ensures
a real, positive amplitude in the discrete setting.

In the asymptotic–safety program, the Euclidean cap
provides a geometric regularization for the gravitational
functional renormalization group. Because the Euclidean
temporal direction is finite in measure, the heat–kernel
trace used to define the running Newton and cosmological
constants remains finite, realizing the ultraviolet fixed
point in a natural way.

D. Summary of quantum–gravitational features

The finite Euclidean–time model therefore:

(i) reproduces the Hartle–Hawking no–boundary wave
functional with a finite Euclidean temporal domain
in place of a compact four–geometry,

(ii) satisfies the Wheeler–DeWitt equation (27) with
a smooth transition between Euclidean and
Lorentzian regimes, and

(iii) provides a finite, reflection–positive Euclidean mea-
sure suited to spin–foam and asymptotic–safety for-
mulations.

No additional fields, parameters, or symmetries are re-
quired. The framework is thus fully compatible with
existing quantum–gravity programs while retaining the
parsimony and empirical equivalence established in Sec-
tion III.

V. DISCUSSION AND PHILOSOPHICAL
IMPLICATIONS

The preceding sections have shown that the finite Eu-
clidean–time (FET) universe—defined by the Euclidean
geometry of Eq. (6) and the reflection–positive field the-
ory of Eq. (9)—reproduces all empirical consequences
of conventional quantum field theory and semiclassical

gravity (Sections III–IV). The distinction lies entirely in
its underlying ontology. The transformation to Euclidean
time may appear as a mere sign or contour flip, but its
internal consistency is non-trivial: reflection positivity,
smooth boundary matching, and analytic continuation
of the geometry all survive intact. This confirmation es-
tablishes that the no-boundary framework remains self-
consistent under temporal Euclideanization, revealing a
previously unarticulated symmetry between its spatial
and temporal formulations. Here we summarize this rein-
terpretation and its broader conceptual significance.

A. Ontological reinterpretation

In the conventional Hartle–Hawking picture [8, 9],
spacetime is a compact four–manifold whose Euclidean
and Lorentzian domains are joined by analytic continua-
tion, treating space and time symmetrically at the origin.
By contrast, the finite Euclidean–time model posits that
only the Euclidean temporal dimension is fundamental
and finite in extent, while spatial relations are emergent
properties that become meaningful when the warp factor
eσ(τ) attains finite value. The pre–geometric Euclidean
cap is therefore not “nothing” but an eternal poten-
tial—a stationary configuration lacking spatial separa-
tion yet supporting temporal order. The Lorentzian uni-
verse arises smoothly when this potential admits commu-
tative spatial directions, rendering geometry and causal-
ity emergent rather than primitive.

This reformulation replaces the notion of “creation
from nothing” with a regular, boundaryless Euclidean
phase of finite measure. Because reflection–positive Eu-
clidean theories admit analytic continuation to unitary
Lorentzian ones, the standard physics of fields, vacuum
fluctuations, and gravity follow automatically from the
formal machinery of Euclidean QFT.

B. Relation to time asymmetry and emergence

The asymmetry between a finite Euclidean temporal
domain and emergent spatial relations provides a natu-
ral foundation for temporal orientation. The Euclidean
cap defines a unique direction of analytic continuation,
selecting an arrow of time without inserting explicit
time–reversal violations. Spatial locality—and conse-
quently causal structure—appear only in the Lorentzian
regime. This viewpoint harmonizes with relational and
process ontologies of spacetime [2, 16] while remaining
consistent with the operational content of relativistic
physics. In this sense, the FET framework supplies a
mathematical realization of the idea that temporal order
may be more fundamental than spatial geometry.
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C. Empirical indistinguishability and interpretive
plurality

As demonstrated in Section III, all measurable corre-
lators, vacuum effects, and gravitational observables co-
incide with those predicted by standard cosmology. No
experiment could distinguish the finite Euclidean–time
model from the conventional no–boundary universe. The
difference is therefore interpretive rather than predic-
tive—analogous to the relation between Schrödinger and
Heisenberg pictures in quantum mechanics. The two de-
scriptions share identical empirical structure while at-
tributing different ontological roles to time and space.
The model thus exposes a layer of conceptual underde-
termination that is often implicit in cosmological reason-
ing.

D. Philosophical significance and outlook

The finite Euclidean–time (FET) cosmology provides
a concrete illustration of how a shift in ontological pri-
ority—placing time before space—can be realized within
established physics without altering empirical content.
“Nothing” in cosmology thus need not denote the ab-
sence of being, but the absence of spatial relations within
a temporally ordered background. The FET framework
links technical quantum–cosmological formalisms with
metaphysical debates on the fundamentality of time, the
nature of beginnings, and the emergence of spacetime

from non–geometric processes. It also demonstrates that
interpretive plurality—distinct ontologies within a shared
mathematical structure—need not threaten scientific re-
alism but can clarify which aspects of a theory describe
the world and which reflect representational choices.

This situation exemplifies the broader theme of inter-
pretive underdetermination in the philosophy of cosmol-
ogy [4, 19]: formally equivalent frameworks can embody
different ontological assumptions while remaining empiri-
cally indistinguishable. The FET model preserves all ob-
servable structure of the Hartle–Hawking no–boundary
proposal (and any reflection–positive Euclidean domain
analytically continued to Lorentzian spacetime [6, 7]) yet
relocates explanatory priority from spacetime symmetry
to temporal fundamentality. Recognizing this underde-
termination reframes the “origin of the universe” problem
as primarily interpretive rather than dynamical.

Future work may extend this formulation in several di-
rections: incorporation of spinor and gauge fields within
the reflection–positive scheme, explicit construction of
Euclidean gravitational instantons realizing Eq. (23),
and investigation of entanglement and information flow
across the Euclidean–Lorentzian junction. More broadly,
the framework invites exploration of temporal finiteness
within quantum information, relational time, and pro-
cess–based approaches to quantum gravity—suggesting
that questions about cosmic beginnings may reveal less
about new physics than about the conceptual lenses
through which existing formalisms are interpreted.
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